We consider the following Problem: Strict Trs: { cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , cond2(true(), x, y) -> cond1(y, y) , cond2(false(), x, y) -> cond1(p(x), y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y)) -> neq(x, y) , p(0()) -> 0() , p(s(x)) -> x} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , cond2(true(), x, y) -> cond1(y, y) , cond2(false(), x, y) -> cond1(p(x), y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y)) -> neq(x, y) , p(0()) -> 0() , p(s(x)) -> x} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 1] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 0] [0 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] false() = [0] [0] p(x1) = [1 0] x1 + [0] [0 0] [1] 0() = [0] [0] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , cond2(true(), x, y) -> cond1(y, y) , cond2(false(), x, y) -> cond1(p(x), y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , neq(s(x), s(y)) -> neq(x, y) , p(0()) -> 0() , p(s(x)) -> x} Weak Trs: { neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond2(false(), x, y) -> cond1(p(x), y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 1] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 0] [0 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] false() = [1] [0] p(x1) = [1 0] x1 + [0] [0 0] [1] 0() = [1] [0] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , neq(s(x), s(y)) -> neq(x, y) , p(0()) -> 0() , p(s(x)) -> x} Weak Trs: { cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 1] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1] [0 0] [0 0] [0 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] false() = [1] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [0] [0] neq(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , neq(s(x), s(y)) -> neq(x, y) , p(s(x)) -> x} Weak Trs: { p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 0] [0 1] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] cond2(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] true() = [0] [0] false() = [2] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] 0() = [2] [0] neq(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), 0()) -> true() , gr(s(x), s(y)) -> gr(x, y) , neq(s(x), s(y)) -> neq(x, y) , p(s(x)) -> x} Weak Trs: { cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {gr(s(x), 0()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 1] x1 + [0 0] x2 + [3] [0 0] [1 1] [1] s(x1) = [0 0] x1 + [0] [1 0] [0] cond2(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [0 0] x3 + [1] [0 0] [0 0] [1 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] false() = [1] [3] p(x1) = [1 1] x1 + [1] [0 0] [1] 0() = [3] [0] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y) , neq(s(x), s(y)) -> neq(x, y) , p(s(x)) -> x} Weak Trs: { gr(s(x), 0()) -> true() , cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(s(x)) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 1] x1 + [0 0] x2 + [2] [0 0] [1 1] [1] s(x1) = [0 1] x1 + [0] [1 0] [2] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [0 0] x3 + [1] [0 0] [0 0] [1 1] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] false() = [3] [0] p(x1) = [0 1] x1 + [0] [1 0] [0] 0() = [0] [0] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [3] [0 0] [1 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y) , neq(s(x), s(y)) -> neq(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {neq(s(x), s(y)) -> neq(x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1}, Uargs(s) = {}, Uargs(cond2) = {1}, Uargs(gr) = {}, Uargs(p) = {}, Uargs(neq) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 1] x1 + [0 0] x2 + [2] [0 0] [0 0] [1] s(x1) = [0 1] x1 + [2] [1 0] [2] cond2(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [0 0] x3 + [2] [0 0] [0 0] [0 0] [1] gr(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] true() = [0] [0] false() = [2] [0] p(x1) = [0 1] x1 + [0] [1 0] [0] 0() = [1] [1] neq(x1, x2) = [1 1] x1 + [1 1] x2 + [0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { neq(s(x), s(y)) -> neq(x, y) , p(s(x)) -> x , gr(s(x), 0()) -> true() , cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { neq(s(x), s(y)) -> neq(x, y) , p(s(x)) -> x , gr(s(x), 0()) -> true() , cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We have computed the following dependency pairs Strict DPs: { cond2^#(true(), x, y) -> cond1^#(y, y) , gr^#(0(), x) -> c_2() , gr^#(s(x), s(y)) -> gr^#(x, y)} Weak DPs: { neq^#(s(x), s(y)) -> neq^#(x, y) , p^#(s(x)) -> c_5() , gr^#(s(x), 0()) -> c_6() , cond1^#(s(x), y) -> cond2^#(gr(s(x), y), s(x), y) , p^#(0()) -> c_8() , cond2^#(false(), x, y) -> cond1^#(p(x), y) , neq^#(0(), 0()) -> c_10() , neq^#(0(), s(x)) -> c_11() , neq^#(s(x), 0()) -> c_12()} We consider the following Problem: Strict DPs: { cond2^#(true(), x, y) -> cond1^#(y, y) , gr^#(0(), x) -> c_2() , gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { cond2(true(), x, y) -> cond1(y, y) , gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: { neq^#(s(x), s(y)) -> neq^#(x, y) , p^#(s(x)) -> c_5() , gr^#(s(x), 0()) -> c_6() , cond1^#(s(x), y) -> cond2^#(gr(s(x), y), s(x), y) , p^#(0()) -> c_8() , cond2^#(false(), x, y) -> cond1^#(p(x), y) , neq^#(0(), 0()) -> c_10() , neq^#(0(), s(x)) -> c_11() , neq^#(s(x), 0()) -> c_12()} Weak Trs: { neq(s(x), s(y)) -> neq(x, y) , p(s(x)) -> x , gr(s(x), 0()) -> true() , cond1(s(x), y) -> cond2(gr(s(x), y), s(x), y) , p(0()) -> 0() , cond2(false(), x, y) -> cond1(p(x), y) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Usable Rules: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} We consider the following Problem: Strict DPs: { cond2^#(true(), x, y) -> cond1^#(y, y) , gr^#(0(), x) -> c_2() , gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: { neq^#(s(x), s(y)) -> neq^#(x, y) , p^#(s(x)) -> c_5() , gr^#(s(x), 0()) -> c_6() , cond1^#(s(x), y) -> cond2^#(gr(s(x), y), s(x), y) , p^#(0()) -> c_8() , cond2^#(false(), x, y) -> cond1^#(p(x), y) , neq^#(0(), 0()) -> c_10() , neq^#(0(), s(x)) -> c_11() , neq^#(s(x), 0()) -> c_12()} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict DPs: { cond2^#(true(), x, y) -> cond1^#(y, y) , gr^#(0(), x) -> c_2() , gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: { neq^#(s(x), s(y)) -> neq^#(x, y) , p^#(s(x)) -> c_5() , gr^#(s(x), 0()) -> c_6() , cond1^#(s(x), y) -> cond2^#(gr(s(x), y), s(x), y) , p^#(0()) -> c_8() , cond2^#(false(), x, y) -> cond1^#(p(x), y) , neq^#(0(), 0()) -> c_10() , neq^#(0(), s(x)) -> c_11() , neq^#(s(x), 0()) -> c_12()} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We use following congruence DG for path analysis ->10:{1,7,9} [ YES(?,O(n^2)) ] ->7:{3} [ YES(?,O(n^1)) ] | |->9:{2} [ YES(?,O(n^1)) ] | `->8:{6} [ YES(O(1),O(1)) ] ->3:{4} [ subsumed ] | |->4:{10} [ YES(O(1),O(1)) ] | |->5:{11} [ YES(O(1),O(1)) ] | `->6:{12} [ YES(O(1),O(1)) ] ->2:{5} [ YES(O(1),O(1)) ] ->1:{8} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: cond2^#(true(), x, y) -> cond1^#(y, y) , 2: gr^#(0(), x) -> c_2() , 3: gr^#(s(x), s(y)) -> gr^#(x, y)} WeakDPs DPs: { 4: neq^#(s(x), s(y)) -> neq^#(x, y) , 5: p^#(s(x)) -> c_5() , 6: gr^#(s(x), 0()) -> c_6() , 7: cond1^#(s(x), y) -> cond2^#(gr(s(x), y), s(x), y) , 8: p^#(0()) -> c_8() , 9: cond2^#(false(), x, y) -> cond1^#(p(x), y) , 10: neq^#(0(), 0()) -> c_10() , 11: neq^#(0(), s(x)) -> c_11() , 12: neq^#(s(x), 0()) -> c_12()} * Path 10:{1,7,9}: YES(?,O(n^2)) ------------------------------ We consider the following Problem: Strict DPs: {cond2^#(true(), x, y) -> cond1^#(y, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict DPs: {cond2^#(true(), x, y) -> cond1^#(y, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict DPs: {cond2^#(true(), x, y) -> cond1^#(y, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {cond2^#(true(), x, y) -> cond1^#(y, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The following argument positions are usable: Uargs(cond2^#) = {}, Uargs(cond1^#) = {} We have the following restricted polynomial interpretation: Interpretation Functions: [true]() = 2 [cond2^#](x1, x2, x3) = x1^2 + 2*x3^2 [cond1^#](x1, x2) = x1^2 * Path 7:{3}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , gr^#_0(2, 2) -> 1 , gr^#_1(2, 2) -> 1} * Path 7:{3}->9:{2}: YES(?,O(n^1)) -------------------------------- We consider the following Problem: Strict DPs: {gr^#(0(), x) -> c_2()} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(0(), x) -> c_2()} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {gr^#(0(), x) -> c_2()} Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {gr^#(0(), x) -> c_2()} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , 0_0() -> 2 , gr^#_0(2, 2) -> 1 , c_2_1() -> 1} * Path 7:{3}->8:{6}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {gr^#(s(x), s(y)) -> gr^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{4}: subsumed -------------------- This path is subsumed by the proof of paths 3:{4}->6:{12}, 3:{4}->5:{11}, 3:{4}->4:{10}. * Path 3:{4}->4:{10}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{4}->5:{11}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{4}->6:{12}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {neq^#(s(x), s(y)) -> neq^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{5}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{8}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { gr(0(), x) -> false() , gr(s(x), s(y)) -> gr(x, y)} Weak Trs: { p(s(x)) -> x , gr(s(x), 0()) -> true() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^2))