We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y())) -> neq(x, y()) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(0()) -> 0() , div2(s(0())) -> 0() , div2(s(s(x))) -> s(div2(x)) , p(0()) -> 0() , p(s(x)) -> x} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y())) -> neq(x, y()) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(0()) -> 0() , div2(s(0())) -> 0() , div2(s(s(x))) -> s(div2(x)) , p(0()) -> 0() , p(s(x)) -> x} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [1] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] 0() = [1] [0] div2(x1) = [0 0] x1 + [0] [0 0] [0] false() = [0] [0] p(x1) = [1 0] x1 + [2] [0 0] [3] s(x1) = [1 0] x1 + [1] [0 0] [1] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y())) -> neq(x, y()) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(0()) -> 0() , div2(s(0())) -> 0() , div2(s(s(x))) -> s(div2(x)) , p(s(x)) -> x} Weak Trs: {p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond2(false(), x) -> cond1(neq(x, 0()), p(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 2] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [0] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] div2(x1) = [0 0] x1 + [0] [0 0] [0] false() = [0] [2] p(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [1] [0 0] [1] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y())) -> neq(x, y()) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(0()) -> 0() , div2(s(0())) -> 0() , div2(s(s(x))) -> s(div2(x)) , p(s(x)) -> x} Weak Trs: { cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { div2(0()) -> 0() , div2(s(0())) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [1] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] div2(x1) = [0 0] x1 + [1] [0 0] [0] false() = [3] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] s(x1) = [1 1] x1 + [0] [0 0] [1] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y())) -> neq(x, y()) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(s(s(x))) -> s(div2(x)) , p(s(x)) -> x} Weak Trs: { div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(s(x)) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [1] neq(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 1] [1] 0() = [0] [0] div2(x1) = [0 0] x1 + [0] [0 0] [0] false() = [0] [0] p(x1) = [1 0] x1 + [0] [0 1] [0] s(x1) = [1 0] x1 + [1] [0 1] [1] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , neq(0(), 0()) -> false() , neq(0(), s(x)) -> true() , neq(s(x), 0()) -> true() , neq(s(x), s(y())) -> neq(x, y()) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(s(s(x))) -> s(div2(x))} Weak Trs: { p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [1] neq(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 1] [1] 0() = [0] [0] div2(x1) = [0 0] x1 + [0] [0 0] [0] false() = [2] [0] p(x1) = [1 0] x1 + [1] [0 1] [0] s(x1) = [1 0] x1 + [2] [0 1] [1] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(s(s(x))) -> s(div2(x))} Weak Trs: { neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {neq(s(x), 0()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 1] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 0] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 1] [0] neq(x1, x2) = [0 0] x1 + [0 2] x2 + [0] [0 0] [0 0] [1] 0() = [0] [1] div2(x1) = [0 0] x1 + [2] [0 0] [2] false() = [3] [0] p(x1) = [1 0] x1 + [0] [0 1] [0] s(x1) = [1 0] x1 + [1] [0 1] [0] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , neq(0(), 0()) -> false() , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(s(s(x))) -> s(div2(x))} Weak Trs: { neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {neq(0(), 0()) -> false()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 2] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] cond2(x1, x2) = [1 3] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [0] neq(x1, x2) = [0 0] x1 + [0 2] x2 + [0] [0 0] [0 0] [2] 0() = [0] [2] div2(x1) = [0 0] x1 + [1] [0 0] [3] false() = [2] [2] p(x1) = [1 0] x1 + [0] [0 1] [0] s(x1) = [1 0] x1 + [0] [0 1] [2] y() = [0] [2] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond1(true(), x) -> cond2(even(x), x) , cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x) , div2(s(s(x))) -> s(div2(x))} Weak Trs: { neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { cond1(true(), x) -> cond2(even(x), x) , div2(s(s(x))) -> s(div2(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 2] x1 + [1 1] x2 + [0] [0 0] [0 0] [0] true() = [0] [3] cond2(x1, x2) = [1 3] x1 + [1 1] x2 + [3] [0 0] [0 0] [0] even(x1) = [0 0] x1 + [0] [0 0] [0] neq(x1, x2) = [0 0] x1 + [0 1] x2 + [0] [0 0] [0 1] [0] 0() = [0] [3] div2(x1) = [1 0] x1 + [2] [0 1] [2] false() = [2] [2] p(x1) = [1 0] x1 + [0] [0 1] [0] s(x1) = [1 0] x1 + [2] [0 1] [3] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { cond1(true(), x) -> cond2(even(x), x) , div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {cond2(true(), x) -> cond1(neq(x, 0()), div2(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(cond1) = {1, 2}, Uargs(cond2) = {1}, Uargs(even) = {}, Uargs(neq) = {}, Uargs(div2) = {}, Uargs(p) = {}, Uargs(s) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: cond1(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] true() = [1] [0] cond2(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 1] [0 0] [1] even(x1) = [0 0] x1 + [0] [0 0] [0] neq(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] 0() = [1] [0] div2(x1) = [1 0] x1 + [0] [0 0] [1] false() = [0] [0] p(x1) = [1 0] x1 + [0] [0 1] [1] s(x1) = [1 0] x1 + [2] [0 1] [0] y() = [0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , cond1(true(), x) -> cond2(even(x), x) , div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , cond1(true(), x) -> cond2(even(x), x) , div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { even^#(0()) -> c_1() , even^#(s(0())) -> c_2() , even^#(s(s(x))) -> even^#(x)} Weak DPs: { cond2^#(true(), x) -> cond1^#(neq(x, 0()), div2(x)) , cond1^#(true(), x) -> cond2^#(even(x), x) , div2^#(s(s(x))) -> div2^#(x) , neq^#(0(), 0()) -> c_7() , neq^#(s(x), 0()) -> c_8() , neq^#(0(), s(x)) -> c_9() , neq^#(s(x), s(y())) -> neq^#(x, y()) , p^#(s(x)) -> c_11() , div2^#(0()) -> c_12() , div2^#(s(0())) -> c_13() , cond2^#(false(), x) -> cond1^#(neq(x, 0()), p(x)) , p^#(0()) -> c_15()} We consider the following Problem: Strict DPs: { even^#(0()) -> c_1() , even^#(s(0())) -> c_2() , even^#(s(s(x))) -> even^#(x)} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: { cond2^#(true(), x) -> cond1^#(neq(x, 0()), div2(x)) , cond1^#(true(), x) -> cond2^#(even(x), x) , div2^#(s(s(x))) -> div2^#(x) , neq^#(0(), 0()) -> c_7() , neq^#(s(x), 0()) -> c_8() , neq^#(0(), s(x)) -> c_9() , neq^#(s(x), s(y())) -> neq^#(x, y()) , p^#(s(x)) -> c_11() , div2^#(0()) -> c_12() , div2^#(s(0())) -> c_13() , cond2^#(false(), x) -> cond1^#(neq(x, 0()), p(x)) , p^#(0()) -> c_15()} Weak Trs: { cond2(true(), x) -> cond1(neq(x, 0()), div2(x)) , cond1(true(), x) -> cond2(even(x), x) , div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , cond2(false(), x) -> cond1(neq(x, 0()), p(x)) , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Strict Usable Rules: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Usable Rules: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} We consider the following Problem: Strict DPs: { even^#(0()) -> c_1() , even^#(s(0())) -> c_2() , even^#(s(s(x))) -> even^#(x)} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: { cond2^#(true(), x) -> cond1^#(neq(x, 0()), div2(x)) , cond1^#(true(), x) -> cond2^#(even(x), x) , div2^#(s(s(x))) -> div2^#(x) , neq^#(0(), 0()) -> c_7() , neq^#(s(x), 0()) -> c_8() , neq^#(0(), s(x)) -> c_9() , neq^#(s(x), s(y())) -> neq^#(x, y()) , p^#(s(x)) -> c_11() , div2^#(0()) -> c_12() , div2^#(s(0())) -> c_13() , cond2^#(false(), x) -> cond1^#(neq(x, 0()), p(x)) , p^#(0()) -> c_15()} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: { even^#(0()) -> c_1() , even^#(s(0())) -> c_2() , even^#(s(s(x))) -> even^#(x)} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: { cond2^#(true(), x) -> cond1^#(neq(x, 0()), div2(x)) , cond1^#(true(), x) -> cond2^#(even(x), x) , div2^#(s(s(x))) -> div2^#(x) , neq^#(0(), 0()) -> c_7() , neq^#(s(x), 0()) -> c_8() , neq^#(0(), s(x)) -> c_9() , neq^#(s(x), s(y())) -> neq^#(x, y()) , p^#(s(x)) -> c_11() , div2^#(0()) -> c_12() , div2^#(s(0())) -> c_13() , cond2^#(false(), x) -> cond1^#(neq(x, 0()), p(x)) , p^#(0()) -> c_15()} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->11:{3} [ YES(?,O(n^1)) ] | |->13:{1} [ YES(?,O(n^1)) ] | `->12:{2} [ YES(?,O(n^1)) ] ->10:{4,5,14} [ YES(O(1),O(1)) ] ->7:{6} [ subsumed ] | |->8:{12} [ YES(O(1),O(1)) ] | `->9:{13} [ YES(O(1),O(1)) ] ->6:{7} [ YES(O(1),O(1)) ] ->5:{8} [ YES(O(1),O(1)) ] ->4:{9} [ YES(O(1),O(1)) ] ->3:{10} [ YES(O(1),O(1)) ] ->2:{11} [ YES(O(1),O(1)) ] ->1:{15} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: even^#(0()) -> c_1() , 2: even^#(s(0())) -> c_2() , 3: even^#(s(s(x))) -> even^#(x)} WeakDPs DPs: { 4: cond2^#(true(), x) -> cond1^#(neq(x, 0()), div2(x)) , 5: cond1^#(true(), x) -> cond2^#(even(x), x) , 6: div2^#(s(s(x))) -> div2^#(x) , 7: neq^#(0(), 0()) -> c_7() , 8: neq^#(s(x), 0()) -> c_8() , 9: neq^#(0(), s(x)) -> c_9() , 10: neq^#(s(x), s(y())) -> neq^#(x, y()) , 11: p^#(s(x)) -> c_11() , 12: div2^#(0()) -> c_12() , 13: div2^#(s(0())) -> c_13() , 14: cond2^#(false(), x) -> cond1^#(neq(x, 0()), p(x)) , 15: p^#(0()) -> c_15()} * Path 11:{3}: YES(?,O(n^1)) -------------------------- We consider the following Problem: Strict DPs: {even^#(s(s(x))) -> even^#(x)} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {even^#(s(s(x))) -> even^#(x)} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {even^#(s(s(x))) -> even^#(x)} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {even^#(s(s(x))) -> even^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , even^#_0(2) -> 1 , even^#_1(2) -> 1} * Path 11:{3}->13:{1}: YES(?,O(n^1)) ---------------------------------- We consider the following Problem: Strict DPs: {even^#(0()) -> c_1()} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {even^#(s(s(x))) -> even^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {even^#(0()) -> c_1()} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {even^#(s(s(x))) -> even^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {even^#(0()) -> c_1()} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {even^#(s(s(x))) -> even^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {even^#(0()) -> c_1()} Weak DPs: {even^#(s(s(x))) -> even^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { 0_0() -> 2 , s_0(2) -> 2 , even^#_0(2) -> 1 , c_1_1() -> 1} * Path 11:{3}->12:{2}: YES(?,O(n^1)) ---------------------------------- We consider the following Problem: Strict DPs: {even^#(s(0())) -> c_2()} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {even^#(s(s(x))) -> even^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {even^#(s(0())) -> c_2()} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {even^#(s(s(x))) -> even^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {even^#(s(0())) -> c_2()} Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {even^#(s(s(x))) -> even^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {even^#(s(0())) -> c_2()} Weak DPs: {even^#(s(s(x))) -> even^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { 0_0() -> 2 , s_0(2) -> 2 , even^#_0(2) -> 1 , c_2_1() -> 1} * Path 10:{4,5,14}: YES(O(1),O(1)) -------------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 7:{6}: subsumed -------------------- This path is subsumed by the proof of paths 7:{6}->9:{13}, 7:{6}->8:{12}. * Path 7:{6}->8:{12}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 7:{6}->9:{13}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {div2^#(s(s(x))) -> div2^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{7}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{8}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{9}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{10}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{11}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{15}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { even(0()) -> true() , even(s(0())) -> false() , even(s(s(x))) -> even(x)} Weak Trs: { div2(s(s(x))) -> s(div2(x)) , neq(0(), 0()) -> false() , neq(s(x), 0()) -> true() , neq(0(), s(x)) -> true() , neq(s(x), s(y())) -> neq(x, y()) , p(s(x)) -> x , div2(0()) -> 0() , div2(s(0())) -> 0() , p(0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))