We consider the following Problem: Strict Trs: { nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , p(s(x)) -> x , id_inc(x) -> x , id_inc(x) -> s(x) , random(x) -> rand(x, 0()) , rand(x, y) -> if(nonZero(x), x, y) , if(false(), x, y) -> y , if(true(), x, y) -> rand(p(x), id_inc(y))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , p(s(x)) -> x , id_inc(x) -> x , id_inc(x) -> s(x) , random(x) -> rand(x, 0()) , rand(x, y) -> if(nonZero(x), x, y) , if(false(), x, y) -> y , if(true(), x, y) -> rand(p(x), id_inc(y))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2}, Uargs(if) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: nonZero(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] true() = [0] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] id_inc(x1) = [1 0] x1 + [1] [0 0] [0] random(x1) = [1 1] x1 + [0] [0 0] [0] rand(x1, x2) = [1 1] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , id_inc(x) -> x , random(x) -> rand(x, 0()) , rand(x, y) -> if(nonZero(x), x, y) , if(false(), x, y) -> y , if(true(), x, y) -> rand(p(x), id_inc(y))} Weak Trs: { nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {random(x) -> rand(x, 0())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2}, Uargs(if) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: nonZero(x1) = [0 0] x1 + [0] [0 0] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] true() = [0] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] id_inc(x1) = [1 0] x1 + [0] [0 0] [0] random(x1) = [1 1] x1 + [2] [0 0] [2] rand(x1, x2) = [1 1] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , id_inc(x) -> x , rand(x, y) -> if(nonZero(x), x, y) , if(false(), x, y) -> y , if(true(), x, y) -> rand(p(x), id_inc(y))} Weak Trs: { random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(false(), x, y) -> y} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2}, Uargs(if) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: nonZero(x1) = [0 0] x1 + [0] [0 0] [1] 0() = [0] [0] false() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] true() = [0] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] id_inc(x1) = [1 0] x1 + [1] [0 0] [0] random(x1) = [1 1] x1 + [0] [0 0] [2] rand(x1, x2) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , id_inc(x) -> x , rand(x, y) -> if(nonZero(x), x, y) , if(true(), x, y) -> rand(p(x), id_inc(y))} Weak Trs: { if(false(), x, y) -> y , random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(true(), x, y) -> rand(p(x), id_inc(y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2}, Uargs(if) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: nonZero(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] false() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] true() = [0] [0] p(x1) = [1 0] x1 + [1] [0 0] [1] id_inc(x1) = [1 0] x1 + [0] [0 0] [0] random(x1) = [1 1] x1 + [0] [0 0] [2] rand(x1, x2) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , id_inc(x) -> x , rand(x, y) -> if(nonZero(x), x, y)} Weak Trs: { if(true(), x, y) -> rand(p(x), id_inc(y)) , if(false(), x, y) -> y , random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {id_inc(x) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2}, Uargs(if) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: nonZero(x1) = [0 0] x1 + [0] [0 0] [2] 0() = [0] [0] false() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] true() = [0] [2] p(x1) = [1 0] x1 + [1] [0 0] [1] id_inc(x1) = [1 0] x1 + [2] [0 1] [0] random(x1) = [1 1] x1 + [0] [0 0] [2] rand(x1, x2) = [1 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] if(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 0] x3 + [2] [0 0] [0 0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , rand(x, y) -> if(nonZero(x), x, y)} Weak Trs: { id_inc(x) -> x , if(true(), x, y) -> rand(p(x), id_inc(y)) , if(false(), x, y) -> y , random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(s(x)) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {}, Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2}, Uargs(if) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: nonZero(x1) = [0 0] x1 + [0] [0 1] [3] 0() = [0] [0] false() = [0] [0] s(x1) = [1 0] x1 + [1] [0 1] [1] true() = [0] [0] p(x1) = [1 0] x1 + [0] [0 1] [0] id_inc(x1) = [1 0] x1 + [1] [0 1] [2] random(x1) = [1 0] x1 + [0] [0 0] [2] rand(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [1] if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 1] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {rand(x, y) -> if(nonZero(x), x, y)} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , if(true(), x, y) -> rand(p(x), id_inc(y)) , if(false(), x, y) -> y , random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {rand(x, y) -> if(nonZero(x), x, y)} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , if(true(), x, y) -> rand(p(x), id_inc(y)) , if(false(), x, y) -> y , random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)} Weak DPs: { p^#(s(x)) -> c_2() , id_inc^#(x) -> c_3() , if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , if^#(false(), x, y) -> c_5() , random^#(x) -> rand^#(x, 0()) , nonZero^#(0()) -> c_7() , nonZero^#(s(x)) -> c_8() , p^#(0()) -> c_9() , id_inc^#(x) -> c_10()} We consider the following Problem: Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)} Strict Trs: {rand(x, y) -> if(nonZero(x), x, y)} Weak DPs: { p^#(s(x)) -> c_2() , id_inc^#(x) -> c_3() , if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , if^#(false(), x, y) -> c_5() , random^#(x) -> rand^#(x, 0()) , nonZero^#(0()) -> c_7() , nonZero^#(s(x)) -> c_8() , p^#(0()) -> c_9() , id_inc^#(x) -> c_10()} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , if(true(), x, y) -> rand(p(x), id_inc(y)) , if(false(), x, y) -> y , random(x) -> rand(x, 0()) , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Weak Usable Rules: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} We consider the following Problem: Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)} Weak DPs: { p^#(s(x)) -> c_2() , id_inc^#(x) -> c_3() , if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , if^#(false(), x, y) -> c_5() , random^#(x) -> rand^#(x, 0()) , nonZero^#(0()) -> c_7() , nonZero^#(s(x)) -> c_8() , p^#(0()) -> c_9() , id_inc^#(x) -> c_10()} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)} Weak DPs: { p^#(s(x)) -> c_2() , id_inc^#(x) -> c_3() , if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , if^#(false(), x, y) -> c_5() , random^#(x) -> rand^#(x, 0()) , nonZero^#(0()) -> c_7() , nonZero^#(s(x)) -> c_8() , p^#(0()) -> c_9() , id_inc^#(x) -> c_10()} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->7:{2} [ YES(O(1),O(1)) ] ->6:{3} [ YES(O(1),O(1)) ] ->5:{6} [ subsumed ] | `->8:{1,4} [ YES(O(1),O(1)) ] | `->9:{5} [ YES(O(1),O(1)) ] ->4:{7} [ YES(O(1),O(1)) ] ->3:{8} [ YES(O(1),O(1)) ] ->2:{9} [ YES(O(1),O(1)) ] ->1:{10} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: rand^#(x, y) -> if^#(nonZero(x), x, y)} WeakDPs DPs: { 2: p^#(s(x)) -> c_2() , 3: id_inc^#(x) -> c_3() , 4: if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , 5: if^#(false(), x, y) -> c_5() , 6: random^#(x) -> rand^#(x, 0()) , 7: nonZero^#(0()) -> c_7() , 8: nonZero^#(s(x)) -> c_8() , 9: p^#(0()) -> c_9() , 10: id_inc^#(x) -> c_10()} * Path 7:{2}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{6}: subsumed -------------------- This path is subsumed by the proof of paths 5:{6}->8:{1,4}. * Path 5:{6}->8:{1,4}: YES(O(1),O(1)) ----------------------------------- We consider the following Problem: Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)} Weak DPs: {random^#(x) -> rand^#(x, 0())} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: rand^#(x, y) -> if^#(nonZero(x), x, y) 2: random^#(x) -> rand^#(x, 0()) -->_1 rand^#(x, y) -> if^#(nonZero(x), x, y) :1 together with the congruence-graph ->1:{2} Weak SCC | `->2:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: rand^#(x, y) -> if^#(nonZero(x), x, y)} WeakDPs DPs: {2: random^#(x) -> rand^#(x, 0())} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 2: random^#(x) -> rand^#(x, 0()) , 1: rand^#(x, y) -> if^#(nonZero(x), x, y)} We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{6}->8:{1,4}->9:{5}: YES(O(1),O(1)) ------------------------------------------ We consider the following Problem: Weak DPs: { random^#(x) -> rand^#(x, 0()) , if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , rand^#(x, y) -> if^#(nonZero(x), x, y)} Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: random^#(x) -> rand^#(x, 0()) -->_1 rand^#(x, y) -> if^#(nonZero(x), x, y) :3 2: if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) -->_1 rand^#(x, y) -> if^#(nonZero(x), x, y) :3 3: rand^#(x, y) -> if^#(nonZero(x), x, y) -->_1 if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) :2 together with the congruence-graph ->1:{1} Weak SCC | `->2:{3,2} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: random^#(x) -> rand^#(x, 0()) , 2: if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) , 3: rand^#(x, y) -> if^#(nonZero(x), x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: random^#(x) -> rand^#(x, 0()) , 3: rand^#(x, y) -> if^#(nonZero(x), x, y) , 2: if^#(true(), x, y) -> rand^#(p(x), id_inc(y))} We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 4:{7}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{8}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{9}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{10}: YES(O(1),O(1)) --------------------------- We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { p(s(x)) -> x , id_inc(x) -> x , nonZero(0()) -> false() , nonZero(s(x)) -> true() , p(0()) -> 0() , id_inc(x) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))