We consider the following Problem:

  Strict Trs:
    {  nonZero(0()) -> false()
     , nonZero(s(x)) -> true()
     , p(0()) -> 0()
     , p(s(x)) -> x
     , id_inc(x) -> x
     , id_inc(x) -> s(x)
     , random(x) -> rand(x, 0())
     , rand(x, y) -> if(nonZero(x), x, y)
     , if(false(), x, y) -> y
     , if(true(), x, y) -> rand(p(x), id_inc(y))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  nonZero(0()) -> false()
       , nonZero(s(x)) -> true()
       , p(0()) -> 0()
       , p(s(x)) -> x
       , id_inc(x) -> x
       , id_inc(x) -> s(x)
       , random(x) -> rand(x, 0())
       , rand(x, y) -> if(nonZero(x), x, y)
       , if(false(), x, y) -> y
       , if(true(), x, y) -> rand(p(x), id_inc(y))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  nonZero(0()) -> false()
       , nonZero(s(x)) -> true()
       , p(0()) -> 0()
       , id_inc(x) -> s(x)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {},
        Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2},
        Uargs(if) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       nonZero(x1) = [0 0] x1 + [1]
                     [0 0]      [1]
       0() = [0]
             [0]
       false() = [0]
                 [0]
       s(x1) = [1 0] x1 + [0]
               [0 0]      [0]
       true() = [0]
                [0]
       p(x1) = [1 0] x1 + [1]
               [0 0]      [1]
       id_inc(x1) = [1 0] x1 + [1]
                    [0 0]      [0]
       random(x1) = [1 1] x1 + [0]
                    [0 0]      [0]
       rand(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                      [0 0]      [0 0]      [1]
       if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [0]
                        [0 0]      [0 0]      [0 0]      [1]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  p(s(x)) -> x
         , id_inc(x) -> x
         , random(x) -> rand(x, 0())
         , rand(x, y) -> if(nonZero(x), x, y)
         , if(false(), x, y) -> y
         , if(true(), x, y) -> rand(p(x), id_inc(y))}
      Weak Trs:
        {  nonZero(0()) -> false()
         , nonZero(s(x)) -> true()
         , p(0()) -> 0()
         , id_inc(x) -> s(x)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {random(x) -> rand(x, 0())}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {},
          Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2},
          Uargs(if) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         nonZero(x1) = [0 0] x1 + [0]
                       [0 0]      [1]
         0() = [0]
               [0]
         false() = [0]
                   [0]
         s(x1) = [1 0] x1 + [0]
                 [0 0]      [0]
         true() = [0]
                  [0]
         p(x1) = [1 0] x1 + [1]
                 [0 0]      [1]
         id_inc(x1) = [1 0] x1 + [0]
                      [0 0]      [0]
         random(x1) = [1 1] x1 + [2]
                      [0 0]      [2]
         rand(x1, x2) = [1 1] x1 + [1 0] x2 + [1]
                        [0 0]      [0 0]      [1]
         if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                          [0 0]      [0 0]      [0 0]      [1]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  p(s(x)) -> x
           , id_inc(x) -> x
           , rand(x, y) -> if(nonZero(x), x, y)
           , if(false(), x, y) -> y
           , if(true(), x, y) -> rand(p(x), id_inc(y))}
        Weak Trs:
          {  random(x) -> rand(x, 0())
           , nonZero(0()) -> false()
           , nonZero(s(x)) -> true()
           , p(0()) -> 0()
           , id_inc(x) -> s(x)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {if(false(), x, y) -> y}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {},
            Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2},
            Uargs(if) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           nonZero(x1) = [0 0] x1 + [0]
                         [0 0]      [1]
           0() = [0]
                 [0]
           false() = [0]
                     [0]
           s(x1) = [1 0] x1 + [0]
                   [0 0]      [0]
           true() = [0]
                    [0]
           p(x1) = [1 0] x1 + [1]
                   [0 0]      [1]
           id_inc(x1) = [1 0] x1 + [1]
                        [0 0]      [0]
           random(x1) = [1 1] x1 + [0]
                        [0 0]      [2]
           rand(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [1]
           if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [1]
                            [0 0]      [0 0]      [0 1]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  p(s(x)) -> x
             , id_inc(x) -> x
             , rand(x, y) -> if(nonZero(x), x, y)
             , if(true(), x, y) -> rand(p(x), id_inc(y))}
          Weak Trs:
            {  if(false(), x, y) -> y
             , random(x) -> rand(x, 0())
             , nonZero(0()) -> false()
             , nonZero(s(x)) -> true()
             , p(0()) -> 0()
             , id_inc(x) -> s(x)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {if(true(), x, y) -> rand(p(x), id_inc(y))}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {},
              Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2},
              Uargs(if) = {1}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             nonZero(x1) = [0 0] x1 + [0]
                           [0 0]      [0]
             0() = [0]
                   [0]
             false() = [0]
                       [0]
             s(x1) = [1 0] x1 + [0]
                     [0 0]      [0]
             true() = [0]
                      [0]
             p(x1) = [1 0] x1 + [1]
                     [0 0]      [1]
             id_inc(x1) = [1 0] x1 + [0]
                          [0 0]      [0]
             random(x1) = [1 1] x1 + [0]
                          [0 0]      [2]
             rand(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                            [0 0]      [0 0]      [1]
             if(x1, x2, x3) = [1 0] x1 + [1 1] x2 + [1 0] x3 + [3]
                              [0 0]      [0 0]      [0 1]      [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  p(s(x)) -> x
               , id_inc(x) -> x
               , rand(x, y) -> if(nonZero(x), x, y)}
            Weak Trs:
              {  if(true(), x, y) -> rand(p(x), id_inc(y))
               , if(false(), x, y) -> y
               , random(x) -> rand(x, 0())
               , nonZero(0()) -> false()
               , nonZero(s(x)) -> true()
               , p(0()) -> 0()
               , id_inc(x) -> s(x)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {id_inc(x) -> x}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {},
                Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2},
                Uargs(if) = {1}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               nonZero(x1) = [0 0] x1 + [0]
                             [0 0]      [2]
               0() = [0]
                     [0]
               false() = [0]
                         [0]
               s(x1) = [1 0] x1 + [0]
                       [0 0]      [0]
               true() = [0]
                        [2]
               p(x1) = [1 0] x1 + [1]
                       [0 0]      [1]
               id_inc(x1) = [1 0] x1 + [2]
                            [0 1]      [0]
               random(x1) = [1 1] x1 + [0]
                            [0 0]      [2]
               rand(x1, x2) = [1 1] x1 + [1 0] x2 + [0]
                              [0 0]      [0 0]      [1]
               if(x1, x2, x3) = [1 1] x1 + [1 1] x2 + [1 0] x3 + [2]
                                [0 0]      [0 0]      [0 1]      [1]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  p(s(x)) -> x
                 , rand(x, y) -> if(nonZero(x), x, y)}
              Weak Trs:
                {  id_inc(x) -> x
                 , if(true(), x, y) -> rand(p(x), id_inc(y))
                 , if(false(), x, y) -> y
                 , random(x) -> rand(x, 0())
                 , nonZero(0()) -> false()
                 , nonZero(s(x)) -> true()
                 , p(0()) -> 0()
                 , id_inc(x) -> s(x)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component: {p(s(x)) -> x}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(nonZero) = {}, Uargs(s) = {}, Uargs(p) = {},
                  Uargs(id_inc) = {}, Uargs(random) = {}, Uargs(rand) = {1, 2},
                  Uargs(if) = {1}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 nonZero(x1) = [0 0] x1 + [0]
                               [0 1]      [3]
                 0() = [0]
                       [0]
                 false() = [0]
                           [0]
                 s(x1) = [1 0] x1 + [1]
                         [0 1]      [1]
                 true() = [0]
                          [0]
                 p(x1) = [1 0] x1 + [0]
                         [0 1]      [0]
                 id_inc(x1) = [1 0] x1 + [1]
                              [0 1]      [2]
                 random(x1) = [1 0] x1 + [0]
                              [0 0]      [2]
                 rand(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
                                [0 0]      [0 0]      [1]
                 if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1]
                                  [0 0]      [0 1]      [0 1]      [1]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs: {rand(x, y) -> if(nonZero(x), x, y)}
                Weak Trs:
                  {  p(s(x)) -> x
                   , id_inc(x) -> x
                   , if(true(), x, y) -> rand(p(x), id_inc(y))
                   , if(false(), x, y) -> y
                   , random(x) -> rand(x, 0())
                   , nonZero(0()) -> false()
                   , nonZero(s(x)) -> true()
                   , p(0()) -> 0()
                   , id_inc(x) -> s(x)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We consider the following Problem:
                
                  Strict Trs: {rand(x, y) -> if(nonZero(x), x, y)}
                  Weak Trs:
                    {  p(s(x)) -> x
                     , id_inc(x) -> x
                     , if(true(), x, y) -> rand(p(x), id_inc(y))
                     , if(false(), x, y) -> y
                     , random(x) -> rand(x, 0())
                     , nonZero(0()) -> false()
                     , nonZero(s(x)) -> true()
                     , p(0()) -> 0()
                     , id_inc(x) -> s(x)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  We have computed the following dependency pairs
                  
                    Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)}
                    Weak DPs:
                      {  p^#(s(x)) -> c_2()
                       , id_inc^#(x) -> c_3()
                       , if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                       , if^#(false(), x, y) -> c_5()
                       , random^#(x) -> rand^#(x, 0())
                       , nonZero^#(0()) -> c_7()
                       , nonZero^#(s(x)) -> c_8()
                       , p^#(0()) -> c_9()
                       , id_inc^#(x) -> c_10()}
                  
                  We consider the following Problem:
                  
                    Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)}
                    Strict Trs: {rand(x, y) -> if(nonZero(x), x, y)}
                    Weak DPs:
                      {  p^#(s(x)) -> c_2()
                       , id_inc^#(x) -> c_3()
                       , if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                       , if^#(false(), x, y) -> c_5()
                       , random^#(x) -> rand^#(x, 0())
                       , nonZero^#(0()) -> c_7()
                       , nonZero^#(s(x)) -> c_8()
                       , p^#(0()) -> c_9()
                       , id_inc^#(x) -> c_10()}
                    Weak Trs:
                      {  p(s(x)) -> x
                       , id_inc(x) -> x
                       , if(true(), x, y) -> rand(p(x), id_inc(y))
                       , if(false(), x, y) -> y
                       , random(x) -> rand(x, 0())
                       , nonZero(0()) -> false()
                       , nonZero(s(x)) -> true()
                       , p(0()) -> 0()
                       , id_inc(x) -> s(x)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We replace strict/weak-rules by the corresponding usable rules:
                    
                      Weak Usable Rules:
                        {  p(s(x)) -> x
                         , id_inc(x) -> x
                         , nonZero(0()) -> false()
                         , nonZero(s(x)) -> true()
                         , p(0()) -> 0()
                         , id_inc(x) -> s(x)}
                    
                    We consider the following Problem:
                    
                      Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)}
                      Weak DPs:
                        {  p^#(s(x)) -> c_2()
                         , id_inc^#(x) -> c_3()
                         , if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                         , if^#(false(), x, y) -> c_5()
                         , random^#(x) -> rand^#(x, 0())
                         , nonZero^#(0()) -> c_7()
                         , nonZero^#(s(x)) -> c_8()
                         , p^#(0()) -> c_9()
                         , id_inc^#(x) -> c_10()}
                      Weak Trs:
                        {  p(s(x)) -> x
                         , id_inc(x) -> x
                         , nonZero(0()) -> false()
                         , nonZero(s(x)) -> true()
                         , p(0()) -> 0()
                         , id_inc(x) -> s(x)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)}
                        Weak DPs:
                          {  p^#(s(x)) -> c_2()
                           , id_inc^#(x) -> c_3()
                           , if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                           , if^#(false(), x, y) -> c_5()
                           , random^#(x) -> rand^#(x, 0())
                           , nonZero^#(0()) -> c_7()
                           , nonZero^#(s(x)) -> c_8()
                           , p^#(0()) -> c_9()
                           , id_inc^#(x) -> c_10()}
                        Weak Trs:
                          {  p(s(x)) -> x
                           , id_inc(x) -> x
                           , nonZero(0()) -> false()
                           , nonZero(s(x)) -> true()
                           , p(0()) -> 0()
                           , id_inc(x) -> s(x)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        We use following congruence DG for path analysis
                        
                        ->7:{2}                                                     [   YES(O(1),O(1))   ]
                        
                        ->6:{3}                                                     [   YES(O(1),O(1))   ]
                        
                        ->5:{6}                                                     [      subsumed      ]
                           |
                           `->8:{1,4}                                               [   YES(O(1),O(1))   ]
                               |
                               `->9:{5}                                             [   YES(O(1),O(1))   ]
                        
                        ->4:{7}                                                     [   YES(O(1),O(1))   ]
                        
                        ->3:{8}                                                     [   YES(O(1),O(1))   ]
                        
                        ->2:{9}                                                     [   YES(O(1),O(1))   ]
                        
                        ->1:{10}                                                    [   YES(O(1),O(1))   ]
                        
                        
                        Here dependency-pairs are as follows:
                        
                        Strict DPs:
                          {1: rand^#(x, y) -> if^#(nonZero(x), x, y)}
                        WeakDPs DPs:
                          {  2: p^#(s(x)) -> c_2()
                           , 3: id_inc^#(x) -> c_3()
                           , 4: if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                           , 5: if^#(false(), x, y) -> c_5()
                           , 6: random^#(x) -> rand^#(x, 0())
                           , 7: nonZero^#(0()) -> c_7()
                           , 8: nonZero^#(s(x)) -> c_8()
                           , 9: p^#(0()) -> c_9()
                           , 10: id_inc^#(x) -> c_10()}
                        
                        * Path 7:{2}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 6:{3}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 5:{6}: subsumed
                          --------------------
                          
                          This path is subsumed by the proof of paths 5:{6}->8:{1,4}.
                        
                        * Path 5:{6}->8:{1,4}: YES(O(1),O(1))
                          -----------------------------------
                          
                          We consider the following Problem:
                          
                            Strict DPs: {rand^#(x, y) -> if^#(nonZero(x), x, y)}
                            Weak DPs: {random^#(x) -> rand^#(x, 0())}
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: rand^#(x, y) -> if^#(nonZero(x), x, y)
                              
                              2: random^#(x) -> rand^#(x, 0())
                                 -->_1 rand^#(x, y) -> if^#(nonZero(x), x, y) :1
                              
                            
                            together with the congruence-graph
                            
                              ->1:{2}                                                     Weak SCC
                                 |
                                 `->2:{1}                                                 Noncyclic, trivial, SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              Strict DPs:
                                {1: rand^#(x, y) -> if^#(nonZero(x), x, y)}
                              WeakDPs DPs:
                                {2: random^#(x) -> rand^#(x, 0())}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {  2: random^#(x) -> rand^#(x, 0())
                               , 1: rand^#(x, y) -> if^#(nonZero(x), x, y)}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 5:{6}->8:{1,4}->9:{5}: YES(O(1),O(1))
                          ------------------------------------------
                          
                          We consider the following Problem:
                          
                            Weak DPs:
                              {  random^#(x) -> rand^#(x, 0())
                               , if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                               , rand^#(x, y) -> if^#(nonZero(x), x, y)}
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the the dependency-graph
                            
                              1: random^#(x) -> rand^#(x, 0())
                                 -->_1 rand^#(x, y) -> if^#(nonZero(x), x, y) :3
                              
                              2: if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                                 -->_1 rand^#(x, y) -> if^#(nonZero(x), x, y) :3
                              
                              3: rand^#(x, y) -> if^#(nonZero(x), x, y)
                                 -->_1 if^#(true(), x, y) -> rand^#(p(x), id_inc(y)) :2
                              
                            
                            together with the congruence-graph
                            
                              ->1:{1}                                                     Weak SCC
                                 |
                                 `->2:{3,2}                                               Weak SCC
                              
                              
                              Here dependency-pairs are as follows:
                              
                              WeakDPs DPs:
                                {  1: random^#(x) -> rand^#(x, 0())
                                 , 2: if^#(true(), x, y) -> rand^#(p(x), id_inc(y))
                                 , 3: rand^#(x, y) -> if^#(nonZero(x), x, y)}
                            
                            The following rules are either leafs or part of trailing weak paths, and thus they can be removed:
                            
                              {  1: random^#(x) -> rand^#(x, 0())
                               , 3: rand^#(x, y) -> if^#(nonZero(x), x, y)
                               , 2: if^#(true(), x, y) -> rand^#(p(x), id_inc(y))}
                            
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 4:{7}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 3:{8}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 2:{9}: YES(O(1),O(1))
                          --------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded
                        
                        * Path 1:{10}: YES(O(1),O(1))
                          ---------------------------
                          
                          We consider the following Problem:
                          
                            Weak Trs:
                              {  p(s(x)) -> x
                               , id_inc(x) -> x
                               , nonZero(0()) -> false()
                               , nonZero(s(x)) -> true()
                               , p(0()) -> 0()
                               , id_inc(x) -> s(x)}
                            StartTerms: basic terms
                            Strategy: innermost
                          
                          Certificate: YES(O(1),O(1))
                          
                          Proof:
                            We consider the following Problem:
                            
                              Weak Trs:
                                {  p(s(x)) -> x
                                 , id_inc(x) -> x
                                 , nonZero(0()) -> false()
                                 , nonZero(s(x)) -> true()
                                 , p(0()) -> 0()
                                 , id_inc(x) -> s(x)}
                              StartTerms: basic terms
                              Strategy: innermost
                            
                            Certificate: YES(O(1),O(1))
                            
                            Proof:
                              We consider the following Problem:
                              
                                Weak Trs:
                                  {  p(s(x)) -> x
                                   , id_inc(x) -> x
                                   , nonZero(0()) -> false()
                                   , nonZero(s(x)) -> true()
                                   , p(0()) -> 0()
                                   , id_inc(x) -> s(x)}
                                StartTerms: basic terms
                                Strategy: innermost
                              
                              Certificate: YES(O(1),O(1))
                              
                              Proof:
                                No rule is usable.
                                
                                We consider the following Problem:
                                
                                  StartTerms: basic terms
                                  Strategy: innermost
                                
                                Certificate: YES(O(1),O(1))
                                
                                Proof:
                                  Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))