We consider the following Problem: Strict Trs: { p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if2(true(), b2, b3, x, y) -> 0() , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if3(true(), b3, x, y) -> 0() , if3(false(), b3, x, y) -> if4(b3, x, y) , if4(true(), x, y) -> s(0()) , if4(false(), x, y) -> average(s(x), p(p(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if2(true(), b2, b3, x, y) -> 0() , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if3(true(), b3, x, y) -> 0() , if3(false(), b3, x, y) -> if4(b3, x, y) , if4(true(), x, y) -> s(0()) , if4(false(), x, y) -> average(s(x), p(p(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [1] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] false() = [0] [0] average(x1, x2) = [1 1] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 1] x5 + [1 1] x6 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , if4(false(), x, y) -> average(s(x), p(p(y)))} Weak Trs: { p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if3(false(), b3, x, y) -> if4(b3, x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [1] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] false() = [0] [0] average(x1, x2) = [1 1] x1 + [1 1] x2 + [1] [0 0] [0 0] [1] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 1] x5 + [1 1] x6 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if4(false(), x, y) -> average(s(x), p(p(y)))} Weak Trs: { if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [1] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [0] [0] false() = [0] [0] average(x1, x2) = [1 1] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 1] x5 + [1 1] x6 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1 0] x4 + [0] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if4(false(), x, y) -> average(s(x), p(p(y)))} Weak Trs: { if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [1] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [1] [0] false() = [0] [0] average(x1, x2) = [1 1] x1 + [1 2] x2 + [1] [0 0] [0 0] [1] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 1] x5 + [1 1] x6 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [2] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1 0] x4 + [0] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if4(false(), x, y) -> average(s(x), p(p(y)))} Weak Trs: { if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if4(false(), x, y) -> average(s(x), p(p(y)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [1] [0 0] [1] s(x1) = [1 0] x1 + [0] [0 0] [2] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] true() = [1] [0] false() = [1] [1] average(x1, x2) = [1 1] x1 + [1 2] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 3] x4 + [1 1] x5 + [1 1] x6 + [0] [0 0] [0 1] [0 1] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [1 0] x1 + [1 0] x2 + [1 3] x3 + [1 0] x4 + [1 0] x5 + [1] [0 0] [0 1] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [1 0] x1 + [1 3] x2 + [1 0] x3 + [1 0] x4 + [2] [0 1] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [1 3] x1 + [1 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 0] [2] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y))} Weak Trs: { if4(false(), x, y) -> average(s(x), p(p(y))) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if(false(), b1, b2, b3, x, y) -> average(p(x), s(y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [0] [0 0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] true() = [0] [0] false() = [0] [0] average(x1, x2) = [1 1] x1 + [1 1] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 1] x5 + [1 1] x6 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 0] x4 + [1 0] x5 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 0] x3 + [1 0] x4 + [0] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [0] [0 0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { p(s(x)) -> x , le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if4(false(), x, y) -> average(s(x), p(p(y))) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {p(s(x)) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [1] [0 1] [0] s(x1) = [1 0] x1 + [0] [0 1] [0] 0() = [0] [0] le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [0] true() = [0] [0] false() = [1] [0] average(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 0] x5 + [1 0] x6 + [0] [0 0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 0] x5 + [0] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [0] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { le(s(x), s(y)) -> le(x, y) , average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { p(s(x)) -> x , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if4(false(), x, y) -> average(s(x), p(p(y))) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {le(s(x), s(y)) -> le(x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(p) = {1}, Uargs(s) = {}, Uargs(le) = {}, Uargs(average) = {1, 2}, Uargs(if) = {1, 2, 3, 4}, Uargs(if2) = {}, Uargs(if3) = {}, Uargs(if4) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: p(x1) = [1 0] x1 + [0] [0 1] [1] s(x1) = [1 0] x1 + [2] [0 1] [0] 0() = [1] [0] le(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [0] true() = [1] [0] false() = [2] [0] average(x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] if(x1, x2, x3, x4, x5, x6) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 0] x5 + [1 0] x6 + [0] [0 0] [0 0] [0 0] [0 0] [0 1] [0 1] [1] if2(x1, x2, x3, x4, x5) = [0 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1 0] x5 + [1] [0 0] [0 0] [0 0] [0 0] [0 0] [1] if3(x1, x2, x3, x4) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1 0] x4 + [1] [0 0] [0 0] [0 0] [0 0] [1] if4(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [3] [0 0] [0 0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if4(false(), x, y) -> average(s(x), p(p(y))) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: {average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if4(false(), x, y) -> average(s(x), p(p(y))) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: {average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak DPs: { le^#(s(x), s(y)) -> le^#(x, y) , p^#(s(x)) -> c_3() , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , p^#(0()) -> c_9() , le^#(0(), y) -> c_10() , le^#(s(x), 0()) -> c_11() , if2^#(true(), b2, b3, x, y) -> c_12() , if3^#(true(), b3, x, y) -> c_13() , if4^#(true(), x, y) -> c_14()} We consider the following Problem: Strict DPs: {average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Strict Trs: {average(x, y) -> if(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak DPs: { le^#(s(x), s(y)) -> le^#(x, y) , p^#(s(x)) -> c_3() , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , p^#(0()) -> c_9() , le^#(0(), y) -> c_10() , le^#(s(x), 0()) -> c_11() , if2^#(true(), b2, b3, x, y) -> c_12() , if3^#(true(), b3, x, y) -> c_13() , if4^#(true(), x, y) -> c_14()} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , if(false(), b1, b2, b3, x, y) -> average(p(x), s(y)) , if4(false(), x, y) -> average(s(x), p(p(y))) , if2(false(), b2, b3, x, y) -> if3(b2, b3, x, y) , if(true(), b1, b2, b3, x, y) -> if2(b1, b2, b3, x, y) , if3(false(), b3, x, y) -> if4(b3, x, y) , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false() , if2(true(), b2, b3, x, y) -> 0() , if3(true(), b3, x, y) -> 0() , if4(true(), x, y) -> s(0())} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We replace strict/weak-rules by the corresponding usable rules: Weak Usable Rules: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} We consider the following Problem: Strict DPs: {average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak DPs: { le^#(s(x), s(y)) -> le^#(x, y) , p^#(s(x)) -> c_3() , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , p^#(0()) -> c_9() , le^#(0(), y) -> c_10() , le^#(s(x), 0()) -> c_11() , if2^#(true(), b2, b3, x, y) -> c_12() , if3^#(true(), b3, x, y) -> c_13() , if4^#(true(), x, y) -> c_14()} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak DPs: { le^#(s(x), s(y)) -> le^#(x, y) , p^#(s(x)) -> c_3() , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , p^#(0()) -> c_9() , le^#(0(), y) -> c_10() , le^#(s(x), 0()) -> c_11() , if2^#(true(), b2, b3, x, y) -> c_12() , if3^#(true(), b3, x, y) -> c_13() , if4^#(true(), x, y) -> c_14()} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->6:{1,5,8,6,7,4} [ YES(O(1),O(1)) ] | |->9:{12} [ YES(O(1),O(1)) ] | |->7:{13} [ YES(O(1),O(1)) ] | `->8:{14} [ YES(O(1),O(1)) ] ->3:{2} [ subsumed ] | |->4:{10} [ YES(O(1),O(1)) ] | `->5:{11} [ YES(O(1),O(1)) ] ->2:{3} [ YES(O(1),O(1)) ] ->1:{9} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: {1: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} WeakDPs DPs: { 2: le^#(s(x), s(y)) -> le^#(x, y) , 3: p^#(s(x)) -> c_3() , 4: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , 5: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 6: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 7: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 8: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 9: p^#(0()) -> c_9() , 10: le^#(0(), y) -> c_10() , 11: le^#(s(x), 0()) -> c_11() , 12: if2^#(true(), b2, b3, x, y) -> c_12() , 13: if3^#(true(), b3, x, y) -> c_13() , 14: if4^#(true(), x, y) -> c_14()} * Path 6:{1,5,8,6,7,4}: YES(O(1),O(1)) ------------------------------------ We consider the following Problem: Strict DPs: {average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) together with the congruence-graph ->1:{1} Noncyclic, trivial, SCC Here dependency-pairs are as follows: Strict DPs: {1: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{1,5,8,6,7,4}->9:{12}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Weak DPs: { if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) -->_1 average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) :6 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) -->_1 if4^#(false(), x, y) -> average^#(s(x), p(p(y))) :1 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) -->_1 if3^#(false(), b3, x, y) -> if4^#(b3, x, y) :2 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) -->_1 if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) :3 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) -->_1 average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) :6 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) -->_1 if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) :5 -->_1 if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) :4 together with the congruence-graph ->1:{1,2,3,4,6,5} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y))} We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{1,5,8,6,7,4}->7:{13}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Weak DPs: { if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) -->_1 average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) :6 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) -->_1 if4^#(false(), x, y) -> average^#(s(x), p(p(y))) :1 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) -->_1 if3^#(false(), b3, x, y) -> if4^#(b3, x, y) :2 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) -->_1 if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) :3 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) -->_1 average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) :6 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) -->_1 if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) :5 -->_1 if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) :4 together with the congruence-graph ->1:{1,2,3,4,6,5} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y))} We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 6:{1,5,8,6,7,4}->8:{14}: YES(O(1),O(1)) -------------------------------------------- We consider the following Problem: Weak DPs: { if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) -->_1 average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) :6 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) -->_1 if4^#(false(), x, y) -> average^#(s(x), p(p(y))) :1 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) -->_1 if3^#(false(), b3, x, y) -> if4^#(b3, x, y) :2 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) -->_1 if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) :3 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) -->_1 average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) :6 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) -->_1 if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) :5 -->_1 if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) :4 together with the congruence-graph ->1:{1,2,3,4,6,5} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: { 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y)) , 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: { 1: if4^#(false(), x, y) -> average^#(s(x), p(p(y))) , 2: if3^#(false(), b3, x, y) -> if4^#(b3, x, y) , 3: if2^#(false(), b2, b3, x, y) -> if3^#(b2, b3, x, y) , 4: if^#(true(), b1, b2, b3, x, y) -> if2^#(b1, b2, b3, x, y) , 6: average^#(x, y) -> if^#(le(x, 0()), le(y, 0()), le(y, s(0())), le(y, s(s(0()))), x, y) , 5: if^#(false(), b1, b2, b3, x, y) -> average^#(p(x), s(y))} We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{2}: subsumed -------------------- This path is subsumed by the proof of paths 3:{2}->5:{11}, 3:{2}->4:{10}. * Path 3:{2}->4:{10}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Weak DPs: {le^#(s(x), s(y)) -> le^#(x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: le^#(s(x), s(y)) -> le^#(x, y) -->_1 le^#(s(x), s(y)) -> le^#(x, y) :1 together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: le^#(s(x), s(y)) -> le^#(x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: le^#(s(x), s(y)) -> le^#(x, y)} We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{2}->5:{11}: YES(O(1),O(1)) ---------------------------------- We consider the following Problem: Weak DPs: {le^#(s(x), s(y)) -> le^#(x, y)} Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the the dependency-graph 1: le^#(s(x), s(y)) -> le^#(x, y) -->_1 le^#(s(x), s(y)) -> le^#(x, y) :1 together with the congruence-graph ->1:{1} Weak SCC Here dependency-pairs are as follows: WeakDPs DPs: {1: le^#(s(x), s(y)) -> le^#(x, y)} The following rules are either leafs or part of trailing weak paths, and thus they can be removed: {1: le^#(s(x), s(y)) -> le^#(x, y)} We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{3}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{9}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Weak Trs: { le(s(x), s(y)) -> le(x, y) , p(s(x)) -> x , p(0()) -> 0() , le(0(), y) -> true() , le(s(x), 0()) -> false()} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))