(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(a, x) → f(g(x), x)
h(g(x)) → h(a)
g(h(x)) → g(x)
h(h(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(g(z0), z0)
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
H(g(z0)) → c1(H(a))
G(h(z0)) → c3(G(z0))
S tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
H(g(z0)) → c1(H(a))
G(h(z0)) → c3(G(z0))
K tuples:none
Defined Rule Symbols:
f, h, g
Defined Pair Symbols:
F, H, G
Compound Symbols:
c, c1, c3
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
H(g(z0)) → c1(H(a))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(g(z0), z0)
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
S tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
K tuples:none
Defined Rule Symbols:
f, h, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c3
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(a, z0) → c(F(g(z0), z0), G(z0))
We considered the (Usable) Rules:
g(h(z0)) → g(z0)
And the Tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = [4]x1
POL(G(x1)) = [3]
POL(a) = [4]
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(g(x1)) = 0
POL(h(x1)) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(g(z0), z0)
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
S tuples:
G(h(z0)) → c3(G(z0))
K tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
Defined Rule Symbols:
f, h, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c3
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(h(z0)) → c3(G(z0))
We considered the (Usable) Rules:
g(h(z0)) → g(z0)
And the Tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x1·x2
POL(G(x1)) = x1
POL(a) = [2]
POL(c(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(g(x1)) = [1]
POL(h(x1)) = [2] + [2]x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(a, z0) → f(g(z0), z0)
h(g(z0)) → h(a)
h(h(z0)) → z0
g(h(z0)) → g(z0)
Tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
S tuples:none
K tuples:
F(a, z0) → c(F(g(z0), z0), G(z0))
G(h(z0)) → c3(G(z0))
Defined Rule Symbols:
f, h, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c3
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))