(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(x, y, z) → g(x, y, z)
g(0, 1, x) → f(x, x, x)
ab
ac

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, z1, z2) → g(z0, z1, z2)
g(0, 1, z0) → f(z0, z0, z0)
ab
ac
Tuples:

F(z0, z1, z2) → c1(G(z0, z1, z2))
G(0, 1, z0) → c2(F(z0, z0, z0))
S tuples:

F(z0, z1, z2) → c1(G(z0, z1, z2))
G(0, 1, z0) → c2(F(z0, z0, z0))
K tuples:none
Defined Rule Symbols:

f, g, a

Defined Pair Symbols:

F, G

Compound Symbols:

c1, c2

(3) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)

Use instantiation to replace F(z0, z1, z2) → c1(G(z0, z1, z2)) by

F(x0, x0, x0) → c1(G(x0, x0, x0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, z1, z2) → g(z0, z1, z2)
g(0, 1, z0) → f(z0, z0, z0)
ab
ac
Tuples:

G(0, 1, z0) → c2(F(z0, z0, z0))
F(x0, x0, x0) → c1(G(x0, x0, x0))
S tuples:

G(0, 1, z0) → c2(F(z0, z0, z0))
F(x0, x0, x0) → c1(G(x0, x0, x0))
K tuples:none
Defined Rule Symbols:

f, g, a

Defined Pair Symbols:

G, F

Compound Symbols:

c2, c1

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

F(x0, x0, x0) → c1(G(x0, x0, x0))
G(0, 1, z0) → c2(F(z0, z0, z0))

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(z0, z1, z2) → g(z0, z1, z2)
g(0, 1, z0) → f(z0, z0, z0)
ab
ac
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f, g, a

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))