(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, y, z) → g(x, y, z)
g(0, 1, x) → f(x, x, x)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, z1, z2) → g(z0, z1, z2)
g(0, 1, z0) → f(z0, z0, z0)
Tuples:
F(z0, z1, z2) → c(G(z0, z1, z2))
G(0, 1, z0) → c1(F(z0, z0, z0))
S tuples:
F(z0, z1, z2) → c(G(z0, z1, z2))
G(0, 1, z0) → c1(F(z0, z0, z0))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1
(3) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
z0,
z1,
z2) →
c(
G(
z0,
z1,
z2)) by
F(0, 1, z2) → c(G(0, 1, z2))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, z1, z2) → g(z0, z1, z2)
g(0, 1, z0) → f(z0, z0, z0)
Tuples:
G(0, 1, z0) → c1(F(z0, z0, z0))
F(0, 1, z2) → c(G(0, 1, z2))
S tuples:
G(0, 1, z0) → c1(F(z0, z0, z0))
F(0, 1, z2) → c(G(0, 1, z2))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
G, F
Compound Symbols:
c1, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
F(0, 1, z2) → c(G(0, 1, z2))
G(0, 1, z0) → c1(F(z0, z0, z0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(z0, z1, z2) → g(z0, z1, z2)
g(0, 1, z0) → f(z0, z0, z0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))