(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(f(x)) → mark(f(f(x)))
chk(no(f(x))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
mat(f(x), f(y)) → f(mat(x, y))
chk(no(c)) → active(c)
mat(f(x), c) → no(c)
f(active(x)) → active(f(x))
f(no(x)) → no(f(x))
f(mark(x)) → mark(f(x))
tp(mark(x)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), x)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
ACTIVE(f(z0)) → c1(F(f(z0)), F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
CHK(no(c)) → c3(ACTIVE(c))
MAT(f(z0), f(y)) → c4(F(mat(z0, y)), MAT(z0, y))
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
S tuples:
ACTIVE(f(z0)) → c1(F(f(z0)), F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
CHK(no(c)) → c3(ACTIVE(c))
MAT(f(z0), f(y)) → c4(F(mat(z0, y)), MAT(z0, y))
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
K tuples:none
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
ACTIVE, CHK, MAT, F, TP
Compound Symbols:
c1, c2, c3, c4, c6, c7, c8, c9
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
MAT(f(z0), f(y)) → c4(F(mat(z0, y)), MAT(z0, y))
CHK(no(c)) → c3(ACTIVE(c))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
ACTIVE(f(z0)) → c1(F(f(z0)), F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
S tuples:
ACTIVE(f(z0)) → c1(F(f(z0)), F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)), MAT(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0), F(f(f(f(f(f(f(f(f(f(X)))))))))), F(f(f(f(f(f(f(f(f(X))))))))), F(f(f(f(f(f(f(f(X)))))))), F(f(f(f(f(f(f(X))))))), F(f(f(f(f(f(X)))))), F(f(f(f(f(X))))), F(f(f(f(X)))), F(f(f(X))), F(f(X)), F(X))
K tuples:none
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
ACTIVE, CHK, F, TP
Compound Symbols:
c1, c2, c6, c7, c8, c9
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 23 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
K tuples:none
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c9
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(no(z0)) → c7(F(z0))
We considered the (Usable) Rules:
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
active(f(z0)) → mark(f(f(z0)))
And the Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(CHK(x1)) = 0
POL(F(x1)) = [4]x1
POL(TP(x1)) = 0
POL(X) = 0
POL(active(x1)) = [4]x1
POL(c) = 0
POL(c1(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(chk(x1)) = 0
POL(f(x1)) = [4]x1
POL(mark(x1)) = x1
POL(mat(x1, x2)) = 0
POL(no(x1)) = [1] + x1
POL(y) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(z0))) → c2(F(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
K tuples:
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c9
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
CHK(
no(
f(
z0))) →
c2(
F(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
z0))),
CHK(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
z0))) by
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(x0))) → c2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(x0))) → c2
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(x0))) → c2
K tuples:
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, TP, CHK
Compound Symbols:
c6, c7, c8, c1, c9, c2, c2
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
CHK(no(f(x0))) → c2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(f(y)))) → c2(F(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, TP, CHK
Compound Symbols:
c6, c7, c8, c1, c9, c2
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
K tuples:
F(no(z0)) → c7(F(z0))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, TP, CHK
Compound Symbols:
c6, c7, c8, c1, c9, c2, c2
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
We considered the (Usable) Rules:
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
chk(no(c)) → active(c)
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
active(f(z0)) → mark(f(f(z0)))
And the Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHK(x1)) = [4]x1
POL(F(x1)) = 0
POL(TP(x1)) = 0
POL(X) = 0
POL(active(x1)) = [5] + [2]x1
POL(c) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(chk(x1)) = [2] + [2]x1
POL(f(x1)) = [4]x1
POL(mark(x1)) = [3]
POL(mat(x1, x2)) = x1
POL(no(x1)) = x1
POL(y) = [4]
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
TP(mark(z0)) → c9(TP(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, TP, CHK
Compound Symbols:
c6, c7, c8, c1, c9, c2, c2
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TP(
mark(
z0)) →
c9(
TP(
chk(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
z0))),
CHK(
mat(
f(
f(
f(
f(
f(
f(
f(
f(
f(
f(
X)))))))))),
z0))) by
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(x0)) → c9
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(x0)) → c9
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(x0)) → c9
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9, c9
(19) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TP(mark(x0)) → c9
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(TP(chk(f(mat(f(f(f(f(f(f(f(f(f(X))))))))), y)))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9
(21) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9, c9
(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
We considered the (Usable) Rules:
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
chk(no(c)) → active(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
active(f(z0)) → mark(f(f(z0)))
And the Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHK(x1)) = 0
POL(F(x1)) = 0
POL(TP(x1)) = [4]
POL(X) = [5]
POL(active(x1)) = [1]
POL(c) = [3]
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(chk(x1)) = [4]
POL(f(x1)) = [3] + [2]x1
POL(mark(x1)) = [3]
POL(mat(x1, x2)) = [5] + [5]x1 + [4]x2
POL(no(x1)) = [2] + x1
POL(y) = [3]
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9, c9
(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
We considered the (Usable) Rules:
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
chk(no(c)) → active(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
active(f(z0)) → mark(f(f(z0)))
And the Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHK(x1)) = [1]
POL(F(x1)) = 0
POL(TP(x1)) = [4]x1
POL(X) = [3]
POL(active(x1)) = 0
POL(c) = [3]
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(chk(x1)) = 0
POL(f(x1)) = [3] + [2]x1
POL(mark(x1)) = [4]
POL(mat(x1, x2)) = [5] + [5]x1 + [4]x2
POL(no(x1)) = [2] + x1
POL(y) = [1]
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9, c9
(27) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
We considered the (Usable) Rules:
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
chk(no(c)) → active(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
active(f(z0)) → mark(f(f(z0)))
And the Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(CHK(x1)) = [2]x1
POL(F(x1)) = x1
POL(TP(x1)) = [2]
POL(X) = 0
POL(active(x1)) = [2] + [5]x1
POL(c) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(chk(x1)) = [2]
POL(f(x1)) = [1] + [4]x1
POL(mark(x1)) = [1] + x1
POL(mat(x1, x2)) = x2
POL(no(x1)) = x1
POL(y) = 0
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9, c9
(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
We considered the (Usable) Rules:
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
chk(no(c)) → active(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
active(f(z0)) → mark(f(f(z0)))
And the Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(CHK(x1)) = x1
POL(F(x1)) = 0
POL(TP(x1)) = [3] + x1
POL(X) = [3]
POL(active(x1)) = [2]x1
POL(c) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c2(x1, x2)) = x1 + x2
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(chk(x1)) = 0
POL(f(x1)) = [1]
POL(mark(x1)) = [4] + x1
POL(mat(x1, x2)) = [2]
POL(no(x1)) = [2] + x1
POL(y) = 0
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(f(z0)) → mark(f(f(z0)))
chk(no(f(z0))) → f(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
chk(no(c)) → active(c)
mat(f(z0), f(y)) → f(mat(z0, y))
mat(f(z0), c) → no(c)
f(active(z0)) → active(f(z0))
f(no(z0)) → no(f(z0))
f(mark(z0)) → mark(f(z0))
tp(mark(z0)) → tp(chk(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), z0)))
Tuples:
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(no(z0)) → c7(F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
S tuples:none
K tuples:
F(no(z0)) → c7(F(z0))
CHK(no(f(f(y)))) → c2(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(f(y))) → c9(CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), f(y))))
TP(mark(c)) → c9(TP(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
F(active(z0)) → c6(ACTIVE(f(z0)), F(z0))
F(mark(z0)) → c8(F(z0))
ACTIVE(f(z0)) → c1(F(z0))
CHK(no(f(c))) → c2(F(chk(no(c))), CHK(mat(f(f(f(f(f(f(f(f(f(f(X)))))))))), c)))
Defined Rule Symbols:
active, chk, mat, f, tp
Defined Pair Symbols:
F, ACTIVE, CHK, TP
Compound Symbols:
c6, c7, c8, c1, c2, c2, c9, c9
(31) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(32) BOUNDS(O(1), O(1))