We consider the following Problem: Strict Trs: { rec(rec(x)) -> sent(rec(x)) , rec(sent(x)) -> sent(rec(x)) , rec(no(x)) -> sent(rec(x)) , rec(bot()) -> up(sent(bot())) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , top(rec(up(x))) -> top(check(rec(x))) , top(sent(up(x))) -> top(check(rec(x))) , top(no(up(x))) -> top(check(rec(x))) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x)) , check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: Arguments of following rules are not normal-forms: { top(no(up(x))) -> top(check(rec(x))) , top(sent(up(x))) -> top(check(rec(x))) , top(rec(up(x))) -> top(check(rec(x)))} All above mentioned rules can be savely removed. We consider the following Problem: Strict Trs: { rec(rec(x)) -> sent(rec(x)) , rec(sent(x)) -> sent(rec(x)) , rec(no(x)) -> sent(rec(x)) , rec(bot()) -> up(sent(bot())) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x)) , check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {check(no(x)) -> no(x)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1}, Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: rec(x1) = [1 0] x1 + [0] [0 0] [1] sent(x1) = [1 0] x1 + [1] [0 0] [1] no(x1) = [1 0] x1 + [0] [0 0] [1] bot() = [0] [0] up(x1) = [1 0] x1 + [0] [0 0] [1] top(x1) = [0 0] x1 + [0] [0 0] [0] check(x1) = [1 0] x1 + [1] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { rec(rec(x)) -> sent(rec(x)) , rec(sent(x)) -> sent(rec(x)) , rec(no(x)) -> sent(rec(x)) , rec(bot()) -> up(sent(bot())) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x))} Weak Trs: {check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {rec(no(x)) -> sent(rec(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1}, Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: rec(x1) = [1 0] x1 + [0] [0 0] [1] sent(x1) = [1 0] x1 + [1] [0 0] [1] no(x1) = [1 0] x1 + [2] [0 0] [0] bot() = [0] [0] up(x1) = [1 0] x1 + [0] [0 0] [0] top(x1) = [0 0] x1 + [0] [0 0] [0] check(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { rec(rec(x)) -> sent(rec(x)) , rec(sent(x)) -> sent(rec(x)) , rec(bot()) -> up(sent(bot())) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x))} Weak Trs: { rec(no(x)) -> sent(rec(x)) , check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {rec(rec(x)) -> sent(rec(x))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1}, Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: rec(x1) = [1 0] x1 + [1] [0 1] [1] sent(x1) = [1 0] x1 + [0] [0 0] [1] no(x1) = [1 0] x1 + [0] [0 0] [0] bot() = [0] [0] up(x1) = [1 0] x1 + [0] [0 1] [1] top(x1) = [0 0] x1 + [0] [0 0] [0] check(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { rec(sent(x)) -> sent(rec(x)) , rec(bot()) -> up(sent(bot())) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x))} Weak Trs: { rec(rec(x)) -> sent(rec(x)) , rec(no(x)) -> sent(rec(x)) , check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {rec(bot()) -> up(sent(bot()))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1}, Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: rec(x1) = [1 0] x1 + [1] [0 0] [1] sent(x1) = [1 0] x1 + [0] [0 0] [1] no(x1) = [1 0] x1 + [0] [0 0] [1] bot() = [0] [0] up(x1) = [1 0] x1 + [0] [0 1] [0] top(x1) = [0 0] x1 + [0] [0 0] [0] check(x1) = [1 0] x1 + [0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { rec(sent(x)) -> sent(rec(x)) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x))} Weak Trs: { rec(bot()) -> up(sent(bot())) , rec(rec(x)) -> sent(rec(x)) , rec(no(x)) -> sent(rec(x)) , check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { rec(sent(x)) -> sent(rec(x)) , rec(up(x)) -> up(rec(x)) , sent(up(x)) -> up(sent(x)) , no(up(x)) -> up(no(x)) , check(up(x)) -> up(check(x)) , check(sent(x)) -> sent(check(x)) , check(rec(x)) -> rec(check(x)) , check(no(x)) -> no(check(x))} Weak Trs: { rec(bot()) -> up(sent(bot())) , rec(rec(x)) -> sent(rec(x)) , rec(no(x)) -> sent(rec(x)) , check(no(x)) -> no(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { rec_0(2) -> 1 , rec_1(2) -> 3 , sent_0(2) -> 1 , sent_1(2) -> 3 , no_0(2) -> 1 , no_1(2) -> 3 , bot_0() -> 2 , bot_1() -> 2 , up_0(1) -> 1 , up_0(2) -> 2 , up_1(3) -> 1 , up_1(3) -> 3 , check_0(2) -> 1 , check_1(2) -> 3} Hurray, we answered YES(?,O(n^1))