We consider the following Problem:
Strict Trs:
{ rec(rec(x)) -> sent(rec(x))
, rec(sent(x)) -> sent(rec(x))
, rec(no(x)) -> sent(rec(x))
, rec(bot()) -> up(sent(bot()))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, top(rec(up(x))) -> top(check(rec(x)))
, top(sent(up(x))) -> top(check(rec(x)))
, top(no(up(x))) -> top(check(rec(x)))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))
, check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
Arguments of following rules are not normal-forms:
{ top(no(up(x))) -> top(check(rec(x)))
, top(sent(up(x))) -> top(check(rec(x)))
, top(rec(up(x))) -> top(check(rec(x)))}
All above mentioned rules can be savely removed.
We consider the following Problem:
Strict Trs:
{ rec(rec(x)) -> sent(rec(x))
, rec(sent(x)) -> sent(rec(x))
, rec(no(x)) -> sent(rec(x))
, rec(bot()) -> up(sent(bot()))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))
, check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {check(no(x)) -> no(x)}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1},
Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
rec(x1) = [1 0] x1 + [0]
[0 0] [1]
sent(x1) = [1 0] x1 + [1]
[0 0] [1]
no(x1) = [1 0] x1 + [0]
[0 0] [1]
bot() = [0]
[0]
up(x1) = [1 0] x1 + [0]
[0 0] [1]
top(x1) = [0 0] x1 + [0]
[0 0] [0]
check(x1) = [1 0] x1 + [1]
[0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ rec(rec(x)) -> sent(rec(x))
, rec(sent(x)) -> sent(rec(x))
, rec(no(x)) -> sent(rec(x))
, rec(bot()) -> up(sent(bot()))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))}
Weak Trs: {check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {rec(no(x)) -> sent(rec(x))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1},
Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
rec(x1) = [1 0] x1 + [0]
[0 0] [1]
sent(x1) = [1 0] x1 + [1]
[0 0] [1]
no(x1) = [1 0] x1 + [2]
[0 0] [0]
bot() = [0]
[0]
up(x1) = [1 0] x1 + [0]
[0 0] [0]
top(x1) = [0 0] x1 + [0]
[0 0] [0]
check(x1) = [1 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ rec(rec(x)) -> sent(rec(x))
, rec(sent(x)) -> sent(rec(x))
, rec(bot()) -> up(sent(bot()))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))}
Weak Trs:
{ rec(no(x)) -> sent(rec(x))
, check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {rec(rec(x)) -> sent(rec(x))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1},
Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
rec(x1) = [1 0] x1 + [1]
[0 1] [1]
sent(x1) = [1 0] x1 + [0]
[0 0] [1]
no(x1) = [1 0] x1 + [0]
[0 0] [0]
bot() = [0]
[0]
up(x1) = [1 0] x1 + [0]
[0 1] [1]
top(x1) = [0 0] x1 + [0]
[0 0] [0]
check(x1) = [1 0] x1 + [0]
[0 0] [0]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ rec(sent(x)) -> sent(rec(x))
, rec(bot()) -> up(sent(bot()))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))}
Weak Trs:
{ rec(rec(x)) -> sent(rec(x))
, rec(no(x)) -> sent(rec(x))
, check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The weightgap principle applies, where following rules are oriented strictly:
TRS Component: {rec(bot()) -> up(sent(bot()))}
Interpretation of nonconstant growth:
-------------------------------------
The following argument positions are usable:
Uargs(rec) = {1}, Uargs(sent) = {1}, Uargs(no) = {1},
Uargs(up) = {1}, Uargs(top) = {}, Uargs(check) = {}
We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
rec(x1) = [1 0] x1 + [1]
[0 0] [1]
sent(x1) = [1 0] x1 + [0]
[0 0] [1]
no(x1) = [1 0] x1 + [0]
[0 0] [1]
bot() = [0]
[0]
up(x1) = [1 0] x1 + [0]
[0 1] [0]
top(x1) = [0 0] x1 + [0]
[0 0] [0]
check(x1) = [1 0] x1 + [0]
[0 0] [1]
The strictly oriented rules are moved into the weak component.
We consider the following Problem:
Strict Trs:
{ rec(sent(x)) -> sent(rec(x))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))}
Weak Trs:
{ rec(bot()) -> up(sent(bot()))
, rec(rec(x)) -> sent(rec(x))
, rec(no(x)) -> sent(rec(x))
, check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ rec(sent(x)) -> sent(rec(x))
, rec(up(x)) -> up(rec(x))
, sent(up(x)) -> up(sent(x))
, no(up(x)) -> up(no(x))
, check(up(x)) -> up(check(x))
, check(sent(x)) -> sent(check(x))
, check(rec(x)) -> rec(check(x))
, check(no(x)) -> no(check(x))}
Weak Trs:
{ rec(bot()) -> up(sent(bot()))
, rec(rec(x)) -> sent(rec(x))
, rec(no(x)) -> sent(rec(x))
, check(no(x)) -> no(x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with the following automaton:
{ rec_0(2) -> 1
, rec_1(2) -> 3
, sent_0(2) -> 1
, sent_1(2) -> 3
, no_0(2) -> 1
, no_1(2) -> 3
, bot_0() -> 2
, bot_1() -> 2
, up_0(1) -> 1
, up_0(2) -> 2
, up_1(3) -> 1
, up_1(3) -> 3
, check_0(2) -> 1
, check_1(2) -> 3}
Hurray, we answered YES(?,O(n^1))