(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, s(z0), s(z1)) → gcd(minus(z0, z1), s(z1))
if_gcd(false, s(z0), s(z1)) → gcd(minus(z1, z0), s(z0))
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
K tuples:none
Defined Rule Symbols:
le, minus, if_minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, IF_MINUS, GCD, IF_GCD
Compound Symbols:
c2, c4, c6, c9, c10, c11
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
We considered the (Usable) Rules:
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
le(0, z0) → true
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GCD(x1, x2)) = [1] + [4]x1 + [4]x2
POL(IF_GCD(x1, x2, x3)) = [4]x2 + [4]x3
POL(IF_MINUS(x1, x2, x3)) = 0
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(if_minus(x1, x2, x3)) = x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, s(z0), s(z1)) → gcd(minus(z0, z1), s(z1))
if_gcd(false, s(z0), s(z1)) → gcd(minus(z1, z0), s(z0))
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
K tuples:
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
Defined Rule Symbols:
le, minus, if_minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, IF_MINUS, GCD, IF_GCD
Compound Symbols:
c2, c4, c6, c9, c10, c11
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
le(0, z0) → true
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GCD(x1, x2)) = x22 + x12
POL(IF_GCD(x1, x2, x3)) = x32 + x22
POL(IF_MINUS(x1, x2, x3)) = x2
POL(LE(x1, x2)) = 0
POL(MINUS(x1, x2)) = x1
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(if_minus(x1, x2, x3)) = x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, s(z0), s(z1)) → gcd(minus(z0, z1), s(z1))
if_gcd(false, s(z0), s(z1)) → gcd(minus(z1, z0), s(z0))
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
K tuples:
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
Defined Rule Symbols:
le, minus, if_minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, IF_MINUS, GCD, IF_GCD
Compound Symbols:
c2, c4, c6, c9, c10, c11
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, s(z0), s(z1)) → gcd(minus(z0, z1), s(z1))
if_gcd(false, s(z0), s(z1)) → gcd(minus(z1, z0), s(z0))
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
S tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
K tuples:
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
Defined Rule Symbols:
le, minus, if_minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, IF_MINUS, GCD, IF_GCD
Compound Symbols:
c2, c4, c6, c9, c10, c11
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^3))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LE(s(z0), s(z1)) → c2(LE(z0, z1))
We considered the (Usable) Rules:
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
le(0, z0) → true
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
And the Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GCD(x1, x2)) = [1] + x1 + x2 + x22 + x1·x2 + x12 + x13 + x23
POL(IF_GCD(x1, x2, x3)) = x2 + x32 + x2·x3 + x22 + x23 + x33
POL(IF_MINUS(x1, x2, x3)) = x22
POL(LE(x1, x2)) = x1
POL(MINUS(x1, x2)) = x1 + x12
POL(c10(x1, x2)) = x1 + x2
POL(c11(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(if_minus(x1, x2, x3)) = x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
le(0, z0) → true
le(s(z0), 0) → false
le(s(z0), s(z1)) → le(z0, z1)
minus(0, z0) → 0
minus(s(z0), z1) → if_minus(le(s(z0), z1), s(z0), z1)
if_minus(true, s(z0), z1) → 0
if_minus(false, s(z0), z1) → s(minus(z0, z1))
gcd(0, z0) → z0
gcd(s(z0), 0) → s(z0)
gcd(s(z0), s(z1)) → if_gcd(le(z1, z0), s(z0), s(z1))
if_gcd(true, s(z0), s(z1)) → gcd(minus(z0, z1), s(z1))
if_gcd(false, s(z0), s(z1)) → gcd(minus(z1, z0), s(z0))
Tuples:
LE(s(z0), s(z1)) → c2(LE(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
S tuples:none
K tuples:
GCD(s(z0), s(z1)) → c9(IF_GCD(le(z1, z0), s(z0), s(z1)), LE(z1, z0))
IF_GCD(true, s(z0), s(z1)) → c10(GCD(minus(z0, z1), s(z1)), MINUS(z0, z1))
IF_GCD(false, s(z0), s(z1)) → c11(GCD(minus(z1, z0), s(z0)), MINUS(z1, z0))
IF_MINUS(false, s(z0), z1) → c6(MINUS(z0, z1))
MINUS(s(z0), z1) → c4(IF_MINUS(le(s(z0), z1), s(z0), z1), LE(s(z0), z1))
LE(s(z0), s(z1)) → c2(LE(z0, z1))
Defined Rule Symbols:
le, minus, if_minus, gcd, if_gcd
Defined Pair Symbols:
LE, MINUS, IF_MINUS, GCD, IF_GCD
Compound Symbols:
c2, c4, c6, c9, c10, c11
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))