(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(c(x, s(y))) → g(c(s(x), y))
f(c(s(x), y)) → f(c(x, s(y)))
f(f(x)) → f(d(f(x)))
f(x) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(c(z0, s(z1))) → g(c(s(z0), z1))
f(c(s(z0), z1)) → f(c(z0, s(z1)))
f(f(z0)) → f(d(f(z0)))
f(z0) → z0
Tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
F(f(z0)) → c3(F(d(f(z0))), F(z0))
S tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
F(f(z0)) → c3(F(d(f(z0))), F(z0))
K tuples:none
Defined Rule Symbols:
g, f
Defined Pair Symbols:
G, F
Compound Symbols:
c1, c2, c3
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
F(f(z0)) → c3(F(d(f(z0))), F(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(c(z0, s(z1))) → g(c(s(z0), z1))
f(c(s(z0), z1)) → f(c(z0, s(z1)))
f(f(z0)) → f(d(f(z0)))
f(z0) → z0
Tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
S tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
K tuples:none
Defined Rule Symbols:
g, f
Defined Pair Symbols:
G, F
Compound Symbols:
c1, c2
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
We considered the (Usable) Rules:none
And the Tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = [4]x1
POL(G(x1)) = 0
POL(c(x1, x2)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(s(x1)) = [2] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(c(z0, s(z1))) → g(c(s(z0), z1))
f(c(s(z0), z1)) → f(c(z0, s(z1)))
f(f(z0)) → f(d(f(z0)))
f(z0) → z0
Tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
S tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
K tuples:
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
Defined Rule Symbols:
g, f
Defined Pair Symbols:
G, F
Compound Symbols:
c1, c2
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
We considered the (Usable) Rules:none
And the Tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = 0
POL(G(x1)) = [4]x1
POL(c(x1, x2)) = x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(s(x1)) = [4] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(c(z0, s(z1))) → g(c(s(z0), z1))
f(c(s(z0), z1)) → f(c(z0, s(z1)))
f(f(z0)) → f(d(f(z0)))
f(z0) → z0
Tuples:
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
S tuples:none
K tuples:
F(c(s(z0), z1)) → c2(F(c(z0, s(z1))))
G(c(z0, s(z1))) → c1(G(c(s(z0), z1)))
Defined Rule Symbols:
g, f
Defined Pair Symbols:
G, F
Compound Symbols:
c1, c2
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))