We consider the following Problem: Strict Trs: { le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x , minus(s(x), s(y)) -> minus(x, y) , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0() , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , if_mod(false(), s(x), s(y)) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: { le(0(), y) -> true() , le(s(x), 0()) -> false() , le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x , minus(s(x), s(y)) -> minus(x, y) , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0() , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , if_mod(false(), s(x), s(y)) -> s(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] true() = [0] [0] s(x1) = [0 0] x1 + [0] [1 1] [0] false() = [0] [0] minus(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] mod(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] if_mod(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x , minus(s(x), s(y)) -> minus(x, y) , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , if_mod(false(), s(x), s(y)) -> s(x)} Weak Trs: { le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] true() = [1] [0] s(x1) = [0 0] x1 + [0] [1 1] [0] false() = [0] [0] minus(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] mod(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] if_mod(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 0] x3 + [3] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x , minus(s(x), s(y)) -> minus(x, y) , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , if_mod(false(), s(x), s(y)) -> s(x)} Weak Trs: { if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {minus(s(x), s(y)) -> minus(x, y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] true() = [0] [0] s(x1) = [0 0] x1 + [0] [1 1] [2] false() = [0] [0] minus(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] mod(x1, x2) = [1 1] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] if_mod(x1, x2, x3) = [1 0] x1 + [0 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , if_mod(false(), s(x), s(y)) -> s(x)} Weak Trs: { minus(s(x), s(y)) -> minus(x, y) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] 0() = [0] [0] true() = [1] [1] s(x1) = [0 0] x1 + [0] [1 1] [3] false() = [0] [0] minus(x1, x2) = [1 1] x1 + [0 0] x2 + [1] [0 0] [0 0] [1] mod(x1, x2) = [1 1] x1 + [0 0] x2 + [3] [0 0] [0 0] [1] if_mod(x1, x2, x3) = [1 1] x1 + [0 1] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x , if_mod(false(), s(x), s(y)) -> s(x)} Weak Trs: { mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , minus(s(x), s(y)) -> minus(x, y) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {if_mod(false(), s(x), s(y)) -> s(x)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [0] 0() = [0] [0] true() = [0] [0] s(x1) = [1 0] x1 + [0] [0 0] [0] false() = [0] [0] minus(x1, x2) = [1 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] mod(x1, x2) = [1 0] x1 + [1 0] x2 + [1] [0 0] [0 0] [1] if_mod(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 0] [0 0] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { le(s(x), s(y)) -> le(x, y) , minus(x, 0()) -> x} Weak Trs: { if_mod(false(), s(x), s(y)) -> s(x) , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , minus(s(x), s(y)) -> minus(x, y) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {minus(x, 0()) -> x} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0] x1 + [0 0] x2 + [0] [0 0] [0 0] [1] 0() = [0] [0] true() = [0] [0] s(x1) = [1 0] x1 + [2] [0 1] [2] false() = [0] [0] minus(x1, x2) = [1 0] x1 + [0 0] x2 + [1] [0 1] [0 0] [1] mod(x1, x2) = [1 0] x1 + [1 0] x2 + [2] [0 1] [0 1] [0] if_mod(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [1 0] x3 + [1] [0 0] [0 1] [0 1] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: {le(s(x), s(y)) -> le(x, y)} Weak Trs: { minus(x, 0()) -> x , if_mod(false(), s(x), s(y)) -> s(x) , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , minus(s(x), s(y)) -> minus(x, y) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: We consider the following Problem: Strict Trs: {le(s(x), s(y)) -> le(x, y)} Weak Trs: { minus(x, 0()) -> x , if_mod(false(), s(x), s(y)) -> s(x) , mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) , minus(s(x), s(y)) -> minus(x, y) , if_mod(true(), s(x), s(y)) -> mod(minus(x, y), s(y)) , le(0(), y) -> true() , le(s(x), 0()) -> false() , mod(0(), y) -> 0() , mod(s(x), 0()) -> 0()} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^2)) Proof: The following argument positions are usable: Uargs(le) = {}, Uargs(s) = {}, Uargs(minus) = {}, Uargs(mod) = {1}, Uargs(if_mod) = {1} We have the following constructor-based EDA-non-satisfying and IDA(2)-non-satisfying matrix interpretation: Interpretation Functions: le(x1, x2) = [0 0 0] x1 + [0 0 1] x2 + [0] [0 0 0] [2 2 0] [1] [2 2 0] [0 0 1] [0] 0() = [1] [1] [0] true() = [0] [0] [0] s(x1) = [1 2 2] x1 + [0] [0 0 0] [0] [0 0 1] [1] false() = [0] [0] [0] minus(x1, x2) = [1 0 0] x1 + [0 0 0] x2 + [1] [2 1 0] [0 0 0] [1] [0 0 1] [0 0 0] [0] mod(x1, x2) = [1 0 2] x1 + [0 0 0] x2 + [0] [0 0 0] [0 0 0] [1] [0 0 2] [0 0 0] [1] if_mod(x1, x2, x3) = [2 0 0] x1 + [1 0 0] x2 + [0 0 0] x3 + [2] [0 0 0] [0 0 0] [0 0 0] [1] [0 0 0] [0 0 2] [0 0 0] [1] Hurray, we answered YES(?,O(n^2))