We consider the following Problem: Strict Trs: { f(0()) -> true() , f(1()) -> false() , f(s(x)) -> f(x) , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y) , g(x, c(y)) -> c(g(x, y)) , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(0()) -> true() , f(1()) -> false() , f(s(x)) -> f(x) , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y) , g(x, c(y)) -> c(g(x, y)) , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: { f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(s) = {}, Uargs(if) = {1, 2}, Uargs(g) = {2}, Uargs(c) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [0 0] [1] 0() = [0] [0] true() = [3] [2] 1() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [1] [0 0] [2] if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1] [1 1] [1 0] [0 1] [1] g(x1, x2) = [0 0] x1 + [1 0] x2 + [1] [0 1] [1 1] [1] c(x1) = [1 0] x1 + [0] [0 0] [0] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(0()) -> true() , f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y)) , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))} Weak Trs: { f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {f(0()) -> true()} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(s) = {}, Uargs(if) = {1, 2}, Uargs(g) = {2}, Uargs(c) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [1] [1 0] [1] 0() = [0] [0] true() = [0] [0] 1() = [3] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0] [0 0] [1 1] [1 1] [0] g(x1, x2) = [0 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] c(x1) = [1 0] x1 + [1] [0 0] [3] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y)) , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))} Weak Trs: { f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The weightgap principle applies, where following rules are oriented strictly: TRS Component: {g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))} Interpretation of nonconstant growth: ------------------------------------- The following argument positions are usable: Uargs(f) = {}, Uargs(s) = {}, Uargs(if) = {1, 2}, Uargs(g) = {2}, Uargs(c) = {1} We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation: Interpretation Functions: f(x1) = [0 0] x1 + [0] [0 0] [0] 0() = [0] [0] true() = [0] [0] 1() = [0] [0] false() = [0] [0] s(x1) = [0 0] x1 + [0] [0 0] [0] if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0] [0 0] [0 0] [0 0] [0] g(x1, x2) = [0 0] x1 + [1 1] x2 + [0] [0 0] [0 0] [1] c(x1) = [1 0] x1 + [0] [0 1] [1] The strictly oriented rules are moved into the weak component. We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We have computed the following dependency pairs Strict DPs: { f^#(s(x)) -> f^#(x) , g^#(x, c(y)) -> g^#(x, y)} Weak DPs: { g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y))) , f^#(0()) -> c_4() , f^#(1()) -> c_5() , if^#(true(), s(x), s(y)) -> c_6() , if^#(false(), s(x), s(y)) -> c_7()} We consider the following Problem: Strict DPs: { f^#(s(x)) -> f^#(x) , g^#(x, c(y)) -> g^#(x, y)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: { g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y))) , f^#(0()) -> c_4() , f^#(1()) -> c_5() , if^#(true(), s(x), s(y)) -> c_6() , if^#(false(), s(x), s(y)) -> c_7()} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: { f^#(s(x)) -> f^#(x) , g^#(x, c(y)) -> g^#(x, y)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: { g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y))) , f^#(0()) -> c_4() , f^#(1()) -> c_5() , if^#(true(), s(x), s(y)) -> c_6() , if^#(false(), s(x), s(y)) -> c_7()} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We use following congruence DG for path analysis ->5:{1} [ YES(?,O(n^1)) ] | |->6:{4} [ YES(O(1),O(1)) ] | `->7:{5} [ YES(O(1),O(1)) ] ->3:{2} [ YES(?,O(n^1)) ] | `->4:{3} [ YES(O(1),O(1)) ] ->2:{6} [ YES(O(1),O(1)) ] ->1:{7} [ YES(O(1),O(1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: f^#(s(x)) -> f^#(x) , 2: g^#(x, c(y)) -> g^#(x, y)} WeakDPs DPs: { 3: g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y))) , 4: f^#(0()) -> c_4() , 5: f^#(1()) -> c_5() , 6: if^#(true(), s(x), s(y)) -> c_6() , 7: if^#(false(), s(x), s(y)) -> c_7()} * Path 5:{1}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {f^#(s(x)) -> f^#(x)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {f^#(s(x)) -> f^#(x)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {f^#(s(x)) -> f^#(x)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {f^#(s(x)) -> f^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { s_0(2) -> 2 , f^#_0(2) -> 1 , f^#_1(2) -> 1} * Path 5:{1}->6:{4}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {f^#(s(x)) -> f^#(x)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {f^#(s(x)) -> f^#(x)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {f^#(s(x)) -> f^#(x)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {f^#(s(x)) -> f^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 5:{1}->7:{5}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {f^#(s(x)) -> f^#(x)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {f^#(s(x)) -> f^#(x)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {f^#(s(x)) -> f^#(x)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {f^#(s(x)) -> f^#(x)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 3:{2}: YES(?,O(n^1)) ------------------------- We consider the following Problem: Strict DPs: {g^#(x, c(y)) -> g^#(x, y)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {g^#(x, c(y)) -> g^#(x, y)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: We consider the following Problem: Strict DPs: {g^#(x, c(y)) -> g^#(x, y)} Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: No rule is usable. We consider the following Problem: Strict DPs: {g^#(x, c(y)) -> g^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(?,O(n^1)) Proof: The problem is match-bounded by 1. The enriched problem is compatible with the following automaton: { c_0(2) -> 2 , g^#_0(2, 2) -> 1 , g^#_1(2, 2) -> 1} * Path 3:{2}->4:{3}: YES(O(1),O(1)) --------------------------------- We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {g^#(x, c(y)) -> g^#(x, y)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {g^#(x, c(y)) -> g^#(x, y)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak DPs: {g^#(x, c(y)) -> g^#(x, y)} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: Weak DPs: {g^#(x, c(y)) -> g^#(x, y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 2:{6}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded * Path 1:{7}: YES(O(1),O(1)) -------------------------- We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: We consider the following Problem: Strict Trs: { f(s(x)) -> f(x) , g(x, c(y)) -> c(g(x, y))} Weak Trs: { g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y))) , f(0()) -> true() , f(1()) -> false() , if(true(), s(x), s(y)) -> s(x) , if(false(), s(x), s(y)) -> s(y)} StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: No rule is usable. We consider the following Problem: StartTerms: basic terms Strategy: innermost Certificate: YES(O(1),O(1)) Proof: Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))