We consider the following Problem:

  Strict Trs:
    {  f(0()) -> true()
     , f(1()) -> false()
     , f(s(x)) -> f(x)
     , if(true(), s(x), s(y)) -> s(x)
     , if(false(), s(x), s(y)) -> s(y)
     , g(x, c(y)) -> c(g(x, y))
     , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  We consider the following Problem:
  
    Strict Trs:
      {  f(0()) -> true()
       , f(1()) -> false()
       , f(s(x)) -> f(x)
       , if(true(), s(x), s(y)) -> s(x)
       , if(false(), s(x), s(y)) -> s(y)
       , g(x, c(y)) -> c(g(x, y))
       , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  f(1()) -> false()
       , if(true(), s(x), s(y)) -> s(x)
       , if(false(), s(x), s(y)) -> s(y)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(f) = {}, Uargs(s) = {}, Uargs(if) = {1, 2}, Uargs(g) = {2},
        Uargs(c) = {1}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       f(x1) = [0 0] x1 + [1]
               [0 0]      [1]
       0() = [0]
             [0]
       true() = [3]
                [2]
       1() = [0]
             [0]
       false() = [0]
                 [0]
       s(x1) = [0 0] x1 + [1]
               [0 0]      [2]
       if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1]
                        [1 1]      [1 0]      [0 1]      [1]
       g(x1, x2) = [0 0] x1 + [1 0] x2 + [1]
                   [0 1]      [1 1]      [1]
       c(x1) = [1 0] x1 + [0]
               [0 0]      [0]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  f(0()) -> true()
         , f(s(x)) -> f(x)
         , g(x, c(y)) -> c(g(x, y))
         , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))}
      Weak Trs:
        {  f(1()) -> false()
         , if(true(), s(x), s(y)) -> s(x)
         , if(false(), s(x), s(y)) -> s(y)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component: {f(0()) -> true()}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(f) = {}, Uargs(s) = {}, Uargs(if) = {1, 2}, Uargs(g) = {2},
          Uargs(c) = {1}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         f(x1) = [0 0] x1 + [1]
                 [1 0]      [1]
         0() = [0]
               [0]
         true() = [0]
                  [0]
         1() = [3]
               [0]
         false() = [0]
                   [0]
         s(x1) = [0 0] x1 + [0]
                 [0 0]      [0]
         if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                          [0 0]      [1 1]      [1 1]      [0]
         g(x1, x2) = [0 0] x1 + [1 0] x2 + [0]
                     [0 1]      [0 1]      [0]
         c(x1) = [1 0] x1 + [1]
                 [0 0]      [3]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  f(s(x)) -> f(x)
           , g(x, c(y)) -> c(g(x, y))
           , g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))}
        Weak Trs:
          {  f(0()) -> true()
           , f(1()) -> false()
           , if(true(), s(x), s(y)) -> s(x)
           , if(false(), s(x), s(y)) -> s(y)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(f) = {}, Uargs(s) = {}, Uargs(if) = {1, 2}, Uargs(g) = {2},
            Uargs(c) = {1}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           f(x1) = [0 0] x1 + [0]
                   [0 0]      [0]
           0() = [0]
                 [0]
           true() = [0]
                    [0]
           1() = [0]
                 [0]
           false() = [0]
                     [0]
           s(x1) = [0 0] x1 + [0]
                   [0 0]      [0]
           if(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
                            [0 0]      [0 0]      [0 0]      [0]
           g(x1, x2) = [0 0] x1 + [1 1] x2 + [0]
                       [0 0]      [0 0]      [1]
           c(x1) = [1 0] x1 + [0]
                   [0 1]      [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  f(s(x)) -> f(x)
             , g(x, c(y)) -> c(g(x, y))}
          Weak Trs:
            {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
             , f(0()) -> true()
             , f(1()) -> false()
             , if(true(), s(x), s(y)) -> s(x)
             , if(false(), s(x), s(y)) -> s(y)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          We consider the following Problem:
          
            Strict Trs:
              {  f(s(x)) -> f(x)
               , g(x, c(y)) -> c(g(x, y))}
            Weak Trs:
              {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
               , f(0()) -> true()
               , f(1()) -> false()
               , if(true(), s(x), s(y)) -> s(x)
               , if(false(), s(x), s(y)) -> s(y)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            We have computed the following dependency pairs
            
              Strict DPs:
                {  f^#(s(x)) -> f^#(x)
                 , g^#(x, c(y)) -> g^#(x, y)}
              Weak DPs:
                {  g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y)))
                 , f^#(0()) -> c_4()
                 , f^#(1()) -> c_5()
                 , if^#(true(), s(x), s(y)) -> c_6()
                 , if^#(false(), s(x), s(y)) -> c_7()}
            
            We consider the following Problem:
            
              Strict DPs:
                {  f^#(s(x)) -> f^#(x)
                 , g^#(x, c(y)) -> g^#(x, y)}
              Strict Trs:
                {  f(s(x)) -> f(x)
                 , g(x, c(y)) -> c(g(x, y))}
              Weak DPs:
                {  g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y)))
                 , f^#(0()) -> c_4()
                 , f^#(1()) -> c_5()
                 , if^#(true(), s(x), s(y)) -> c_6()
                 , if^#(false(), s(x), s(y)) -> c_7()}
              Weak Trs:
                {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                 , f(0()) -> true()
                 , f(1()) -> false()
                 , if(true(), s(x), s(y)) -> s(x)
                 , if(false(), s(x), s(y)) -> s(y)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              We consider the following Problem:
              
                Strict DPs:
                  {  f^#(s(x)) -> f^#(x)
                   , g^#(x, c(y)) -> g^#(x, y)}
                Strict Trs:
                  {  f(s(x)) -> f(x)
                   , g(x, c(y)) -> c(g(x, y))}
                Weak DPs:
                  {  g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y)))
                   , f^#(0()) -> c_4()
                   , f^#(1()) -> c_5()
                   , if^#(true(), s(x), s(y)) -> c_6()
                   , if^#(false(), s(x), s(y)) -> c_7()}
                Weak Trs:
                  {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                   , f(0()) -> true()
                   , f(1()) -> false()
                   , if(true(), s(x), s(y)) -> s(x)
                   , if(false(), s(x), s(y)) -> s(y)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                We use following congruence DG for path analysis
                
                ->5:{1}                                                     [   YES(?,O(n^1))    ]
                   |
                   |->6:{4}                                                 [   YES(O(1),O(1))   ]
                   |
                   `->7:{5}                                                 [   YES(O(1),O(1))   ]
                
                ->3:{2}                                                     [   YES(?,O(n^1))    ]
                   |
                   `->4:{3}                                                 [   YES(O(1),O(1))   ]
                
                ->2:{6}                                                     [   YES(O(1),O(1))   ]
                
                ->1:{7}                                                     [   YES(O(1),O(1))   ]
                
                
                Here dependency-pairs are as follows:
                
                Strict DPs:
                  {  1: f^#(s(x)) -> f^#(x)
                   , 2: g^#(x, c(y)) -> g^#(x, y)}
                WeakDPs DPs:
                  {  3: g^#(x, c(y)) -> g^#(x, if(f(x), c(g(s(x), y)), c(y)))
                   , 4: f^#(0()) -> c_4()
                   , 5: f^#(1()) -> c_5()
                   , 6: if^#(true(), s(x), s(y)) -> c_6()
                   , 7: if^#(false(), s(x), s(y)) -> c_7()}
                
                * Path 5:{1}: YES(?,O(n^1))
                  -------------------------
                  
                  We consider the following Problem:
                  
                    Strict DPs: {f^#(s(x)) -> f^#(x)}
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict DPs: {f^#(s(x)) -> f^#(x)}
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict DPs: {f^#(s(x)) -> f^#(x)}
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          Strict DPs: {f^#(s(x)) -> f^#(x)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          The problem is match-bounded by 1.
                          The enriched problem is compatible with the following automaton:
                          {  s_0(2) -> 2
                           , f^#_0(2) -> 1
                           , f^#_1(2) -> 1}
                
                * Path 5:{1}->6:{4}: YES(O(1),O(1))
                  ---------------------------------
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak DPs: {f^#(s(x)) -> f^#(x)}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak DPs: {f^#(s(x)) -> f^#(x)}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak DPs: {f^#(s(x)) -> f^#(x)}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          Weak DPs: {f^#(s(x)) -> f^#(x)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded
                
                * Path 5:{1}->7:{5}: YES(O(1),O(1))
                  ---------------------------------
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak DPs: {f^#(s(x)) -> f^#(x)}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak DPs: {f^#(s(x)) -> f^#(x)}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak DPs: {f^#(s(x)) -> f^#(x)}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          Weak DPs: {f^#(s(x)) -> f^#(x)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded
                
                * Path 3:{2}: YES(?,O(n^1))
                  -------------------------
                  
                  We consider the following Problem:
                  
                    Strict DPs: {g^#(x, c(y)) -> g^#(x, y)}
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict DPs: {g^#(x, c(y)) -> g^#(x, y)}
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict DPs: {g^#(x, c(y)) -> g^#(x, y)}
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(?,O(n^1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          Strict DPs: {g^#(x, c(y)) -> g^#(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(?,O(n^1))
                        
                        Proof:
                          The problem is match-bounded by 1.
                          The enriched problem is compatible with the following automaton:
                          {  c_0(2) -> 2
                           , g^#_0(2, 2) -> 1
                           , g^#_1(2, 2) -> 1}
                
                * Path 3:{2}->4:{3}: YES(O(1),O(1))
                  ---------------------------------
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak DPs: {g^#(x, c(y)) -> g^#(x, y)}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak DPs: {g^#(x, c(y)) -> g^#(x, y)}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak DPs: {g^#(x, c(y)) -> g^#(x, y)}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          Weak DPs: {g^#(x, c(y)) -> g^#(x, y)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded
                
                * Path 2:{6}: YES(O(1),O(1))
                  --------------------------
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded
                
                * Path 1:{7}: YES(O(1),O(1))
                  --------------------------
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  f(s(x)) -> f(x)
                       , g(x, c(y)) -> c(g(x, y))}
                    Weak Trs:
                      {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                       , f(0()) -> true()
                       , f(1()) -> false()
                       , if(true(), s(x), s(y)) -> s(x)
                       , if(false(), s(x), s(y)) -> s(y)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(O(1),O(1))
                  
                  Proof:
                    We consider the following Problem:
                    
                      Strict Trs:
                        {  f(s(x)) -> f(x)
                         , g(x, c(y)) -> c(g(x, y))}
                      Weak Trs:
                        {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                         , f(0()) -> true()
                         , f(1()) -> false()
                         , if(true(), s(x), s(y)) -> s(x)
                         , if(false(), s(x), s(y)) -> s(y)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(O(1),O(1))
                    
                    Proof:
                      We consider the following Problem:
                      
                        Strict Trs:
                          {  f(s(x)) -> f(x)
                           , g(x, c(y)) -> c(g(x, y))}
                        Weak Trs:
                          {  g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))
                           , f(0()) -> true()
                           , f(1()) -> false()
                           , if(true(), s(x), s(y)) -> s(x)
                           , if(false(), s(x), s(y)) -> s(y)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        No rule is usable.
                        
                        We consider the following Problem:
                        
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))