(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) → plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) → plus(plus(y, s(s(z))), plus(x, s(0)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
K tuples:none
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, QUOT, PLUS
Compound Symbols:
c1, c3, c5, c6, c7
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(MINUS(x1, x2)) = 0
POL(PLUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = [4]x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = x1
POL(plus(x1, x2)) = [3]x1
POL(s(x1)) = [4] + x1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
K tuples:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, QUOT, PLUS
Compound Symbols:
c1, c3, c5, c6, c7
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(MINUS(x1, x2)) = 0
POL(PLUS(x1, x2)) = x2
POL(QUOT(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = [3] + x2
POL(plus(x1, x2)) = [3]x2
POL(s(x1)) = [1] + x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
K tuples:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, QUOT, PLUS
Compound Symbols:
c1, c3, c5, c6, c7
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(MINUS(x1, x2)) = 0
POL(PLUS(x1, x2)) = x2
POL(QUOT(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2, x3)) = x1 + x2 + x3
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(minus(x1, x2)) = [3] + x2
POL(plus(x1, x2)) = [4]x2
POL(s(x1)) = [2] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, QUOT, PLUS
Compound Symbols:
c1, c3, c5, c6, c7
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
QUOT(
s(
z0),
s(
z1)) →
c3(
QUOT(
minus(
z0,
z1),
s(
z1)),
MINUS(
z0,
z1)) by
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
QUOT(s(x0), s(x1)) → c3
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
QUOT(s(x0), s(x1)) → c3
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, PLUS, QUOT
Compound Symbols:
c1, c5, c6, c7, c3, c3
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
QUOT(s(x0), s(x1)) → c3
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, PLUS, QUOT
Compound Symbols:
c1, c5, c6, c7, c3
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PLUS(
minus(
z0,
s(
0)),
minus(
z1,
s(
s(
z2)))) →
c6(
PLUS(
minus(
z1,
s(
s(
z2))),
minus(
z0,
s(
0))),
MINUS(
z1,
s(
s(
z2))),
MINUS(
z0,
s(
0))) by
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, PLUS, QUOT
Compound Symbols:
c1, c5, c7, c3, c6
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
PLUS(
plus(
z0,
s(
0)),
plus(
z1,
s(
s(
z2)))) →
c7(
PLUS(
plus(
z1,
s(
s(
z2))),
plus(
z0,
s(
0))),
PLUS(
z1,
s(
s(
z2))),
PLUS(
z0,
s(
0))) by
PLUS(plus(x0, s(0)), plus(x1, s(s(x2)))) → c7(PLUS(x1, s(s(x2))), PLUS(x0, s(0)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
PLUS(plus(x0, s(0)), plus(x1, s(s(x2)))) → c7(PLUS(x1, s(s(x2))), PLUS(x0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
K tuples:
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, PLUS, QUOT
Compound Symbols:
c1, c5, c3, c6, c7
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
PLUS(plus(x0, s(0)), plus(x1, s(s(x2)))) → c7(PLUS(x1, s(s(x2))), PLUS(x0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [3]
POL(MINUS(x1, x2)) = [2]
POL(PLUS(x1, x2)) = [4] + [5]x1 + [4]x2
POL(QUOT(x1, x2)) = [5]x1
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = x1
POL(plus(x1, x2)) = [1] + [4]x1 + [4]x2
POL(s(x1)) = [5] + x1
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
PLUS(plus(x0, s(0)), plus(x1, s(s(x2)))) → c7(PLUS(x1, s(s(x2))), PLUS(x0, s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
K tuples:
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, PLUS, QUOT
Compound Symbols:
c1, c5, c3, c6, c7
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
PLUS(plus(x0, s(0)), plus(x1, s(s(x2)))) → c7(PLUS(x1, s(s(x2))), PLUS(x0, s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(MINUS(x1, x2)) = [3] + [2]x1
POL(PLUS(x1, x2)) = [2]x1 + x2 + [2]x22 + [3]x1·x2
POL(QUOT(x1, x2)) = x1·x2 + [2]x12
POL(c1(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(minus(x1, x2)) = [2] + x1
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = [2] + x1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
plus(minus(z0, s(0)), minus(z1, s(s(z2)))) → plus(minus(z1, s(s(z2))), minus(z0, s(0)))
plus(plus(z0, s(0)), plus(z1, s(s(z2)))) → plus(plus(z1, s(s(z2))), plus(z0, s(0)))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
QUOT(s(z0), s(0)) → c3(QUOT(z0, s(0)), MINUS(z0, 0))
QUOT(s(s(z0)), s(s(z1))) → c3(QUOT(minus(z0, z1), s(s(z1))), MINUS(s(z0), s(z1)))
PLUS(minus(x0, s(0)), minus(x1, s(s(x2)))) → c6(MINUS(x1, s(s(x2))), MINUS(x0, s(0)))
PLUS(plus(x0, s(0)), plus(x1, s(s(x2)))) → c7(PLUS(x1, s(s(x2))), PLUS(x0, s(0)))
S tuples:none
K tuples:
PLUS(minus(z0, s(0)), minus(z1, s(s(z2)))) → c6(PLUS(minus(z1, s(s(z2))), minus(z0, s(0))), MINUS(z1, s(s(z2))), MINUS(z0, s(0)))
PLUS(plus(z0, s(0)), plus(z1, s(s(z2)))) → c7(PLUS(plus(z1, s(s(z2))), plus(z0, s(0))), PLUS(z1, s(s(z2))), PLUS(z0, s(0)))
PLUS(s(z0), z1) → c5(PLUS(z0, z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
minus, quot, plus
Defined Pair Symbols:
MINUS, PLUS, QUOT
Compound Symbols:
c1, c5, c3, c6, c7
(21) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(22) BOUNDS(O(1), O(1))