(VAR M N) (STRATEGY CONTEXTSENSITIVE (U11 1) (tt) (U12 1) (s 1) (plus 1 2) (0) ) (RULES U11(tt,M,N) -> U12(tt,M,N) U12(tt,M,N) -> s(plus(N,M)) plus(N,0) -> N plus(N,s(M)) -> U11(tt,M,N) ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for MYNAT_nosorts_noand: -> Dependency pairs: nF_U11(tt,M,N) -> nF_U12(tt,M,N) nF_U12(tt,M,N) -> nF_plus(N,M) nF_U12(tt,M,N) -> N nF_U12(tt,M,N) -> M nF_plus(N,s(M)) -> nF_U11(tt,M,N) -> Proof of termination for MYNAT_nosorts_noand_1: -> -> Dependency pairs in cycle: nF_U11(tt,M,N) -> nF_U12(tt,M,N) nF_plus(N,s(M)) -> nF_U11(tt,M,N) nF_U12(tt,M,N) -> nF_plus(N,M) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.