(VAR V2 N M V1) (STRATEGY CONTEXTSENSITIVE (U11 1) (tt) (U12 1) (isNat) (U21 1) (U31 1) (U41 1) (U42 1) (s 1) (plus 1 2) (0) ) (RULES U11(tt,V2) -> U12(isNat(V2)) U12(tt) -> tt U21(tt) -> tt U31(tt,N) -> N U41(tt,M,N) -> U42(isNat(N),M,N) U42(tt,M,N) -> s(plus(N,M)) isNat(0) -> tt isNat(plus(V1,V2)) -> U11(isNat(V1),V2) isNat(s(V1)) -> U21(isNat(V1)) plus(N,0) -> U31(isNat(N),N) plus(N,s(M)) -> U41(isNat(M),M,N) ) Proving termination of context-sensitive rewriting for MYNAT_nokinds_noand: -> Dependency pairs: nF_U11(tt,V2) -> nF_U12(isNat(V2)) nF_U11(tt,V2) -> nF_isNat(V2) nF_U31(tt,N) -> N nF_U41(tt,M,N) -> nF_U42(isNat(N),M,N) nF_U41(tt,M,N) -> nF_isNat(N) nF_U42(tt,M,N) -> nF_plus(N,M) nF_U42(tt,M,N) -> N nF_U42(tt,M,N) -> M nF_isNat(plus(V1,V2)) -> nF_U11(isNat(V1),V2) nF_isNat(plus(V1,V2)) -> nF_isNat(V1) nF_isNat(s(V1)) -> nF_U21(isNat(V1)) nF_isNat(s(V1)) -> nF_isNat(V1) nF_plus(N,0) -> nF_U31(isNat(N),N) nF_plus(N,0) -> nF_isNat(N) nF_plus(N,s(M)) -> nF_U41(isNat(M),M,N) nF_plus(N,s(M)) -> nF_isNat(M) -> Proof of termination for MYNAT_nokinds_noand_1_1: -> -> Dependency pairs in cycle: nF_U41(tt,M,N) -> nF_U42(isNat(N),M,N) nF_plus(N,s(M)) -> nF_U41(isNat(M),M,N) nF_U42(tt,M,N) -> nF_plus(N,M) Termination proved: Cycles verify subterm criterion. -> Proof of termination for MYNAT_nokinds_noand_1_2: -> -> Dependency pairs in cycle: nF_U11(tt,V2) -> nF_isNat(V2) nF_isNat(plus(V1,V2)) -> nF_U11(isNat(V1),V2) nF_isNat(s(V1)) -> nF_isNat(V1) nF_isNat(plus(V1,V2)) -> nF_isNat(V1) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.