Termination of the following Term Rewriting System could be proven:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

The replacement map contains the following entries:

__: {1, 2}
nil: empty set
and: {1}
tt: empty set
isList: empty set
isNeList: empty set
isQid: empty set
isNePal: empty set
isPal: empty set
a: empty set
e: empty set
i: empty set
o: empty set
u: empty set


CSR
  ↳ CSDependencyPairsProof

Context-sensitive rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

The replacement map contains the following entries:

__: {1, 2}
nil: empty set
and: {1}
tt: empty set
isList: empty set
isNeList: empty set
isQid: empty set
isNePal: empty set
isPal: empty set
a: empty set
e: empty set
i: empty set
o: empty set
u: empty set

Using Improved CS-DPs we result in the following initial Q-CSDP problem.

↳ CSR
  ↳ CSDependencyPairsProof
QCSDP
      ↳ QCSDependencyGraphProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {__, __1} are replacing on all positions.
For all symbols f in {and, AND} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal, ISNELIST, ISLIST, ISQID, ISNEPAL, ISPAL, U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
ISLIST(V) → ISNELIST(V)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(V) → ISQID(V)
ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
ISNEPAL(V) → ISQID(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
ISNEPAL(__(I, __(P, I))) → ISQID(I)
ISPAL(V) → ISNEPAL(V)

The collapsing dependency pairs are DPc:

AND(tt, X) → X


The hidden terms of R are:

isList(V2)
isNeList(V2)
isPal(P)

Every hiding context is built from:none

Hence, the new unhiding pairs DPu are :

AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
U(isNeList(V2)) → ISNELIST(V2)
U(isPal(P)) → ISPAL(P)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 2 SCCs with 3 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
QCSDP
            ↳ QCSDPReductionPairProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {__} are replacing on all positions.
For all symbols f in {and, AND} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal, ISNELIST, U, ISLIST, ISPAL, ISNEPAL} are not replacing on any position.

The TRS P consists of the following rules:

ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
ISLIST(V) → ISNELIST(V)
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)
U(isPal(P)) → ISPAL(P)
ISPAL(V) → ISNEPAL(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

Using the order
Polynomial interpretation with max and min functions [25]:

POL(AND(x1, x2)) = x2   
POL(ISLIST(x1)) = 0   
POL(ISNELIST(x1)) = 0   
POL(ISNEPAL(x1)) = x1   
POL(ISPAL(x1)) = x1   
POL(U(x1)) = x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(and(x1, x2)) = x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = 0   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = 1 + x1   
POL(isQid(x1)) = 0   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   

the following usable rules

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
and(tt, X) → X
isPal(V) → isNePal(V)
isPal(nil) → tt
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))

could all be oriented weakly.
Furthermore, the pairs

U(isPal(P)) → ISPAL(P)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))

could be oriented strictly and thus removed.
The pairs

ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
ISLIST(V) → ISNELIST(V)
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)
ISPAL(V) → ISNEPAL(V)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
QCSDP
                ↳ QCSDependencyGraphProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {__} are replacing on all positions.
For all symbols f in {and, AND} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal, ISNELIST, U, ISLIST, ISNEPAL, ISPAL} are not replacing on any position.

The TRS P consists of the following rules:

ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
ISLIST(V) → ISNELIST(V)
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)
ISPAL(V) → ISNEPAL(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 1 SCC.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
QCSDP
                    ↳ QCSDPReductionPairProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {__} are replacing on all positions.
For all symbols f in {and, AND} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal, U, ISLIST, ISNELIST} are not replacing on any position.

The TRS P consists of the following rules:

AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
ISLIST(V) → ISNELIST(V)
ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

Using the order
Polynomial Order [21,25] with Interpretation:

POL( i ) = 1


POL( a ) = max{0, -1}


POL( __(x1, x2) ) = 2x1 + x2 + 2


POL( isList(x1) ) = x1 + 2


POL( ISNELIST(x1) ) = 2x1 + 1


POL( e ) = max{0, -1}


POL( isNePal(x1) ) = x1 + 1


POL( and(x1, x2) ) = x2 + 2


POL( o ) = 2


POL( isQid(x1) ) = max{0, x1 - 1}


POL( isPal(x1) ) = 2x1 + 2


POL( tt ) = max{0, -1}


POL( u ) = max{0, -1}


POL( AND(x1, x2) ) = 2x2


POL( U(x1) ) = max{0, 2x1 - 1}


POL( isNeList(x1) ) = x1 + 2


POL( ISLIST(x1) ) = 2x1 + 2


POL( nil ) = max{0, -1}



the following usable rules

isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt

could all be oriented weakly.
Furthermore, the pairs

U(isList(V2)) → ISLIST(V2)
ISLIST(V) → ISNELIST(V)
ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)

could be oriented strictly and thus removed.
The pairs

AND(tt, X) → U(X)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ QCSDP
                    ↳ QCSDPReductionPairProof
QCSDP
                        ↳ QCSDependencyGraphProof
          ↳ QCSDP

Q-restricted context-sensitive dependency pair problem:
The symbols in {__} are replacing on all positions.
For all symbols f in {and, AND} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal, U} are not replacing on any position.

The TRS P consists of the following rules:

AND(tt, X) → U(X)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
QCSDP
            ↳ QCSDPSubtermProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {__, __1} are replacing on all positions.
For all symbols f in {and} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal} are not replacing on any position.

The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  x1

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
            ↳ QCSDPSubtermProof
QCSDP
                ↳ PIsEmptyProof

Q-restricted context-sensitive dependency pair problem:
The symbols in {__} are replacing on all positions.
For all symbols f in {and} we have µ(f) = {1}.
The symbols in {isList, isNeList, isQid, isNePal, isPal} are not replacing on any position.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt

Q is empty.

The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.