and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and: {1}
tt: empty set
plus: {1, 2}
0: empty set
s: {1}
x: {1, 2}
↳ CSR
↳ CSRInnermostProof
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and: {1}
tt: empty set
plus: {1, 2}
0: empty set
s: {1}
x: {1, 2}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and: {1}
tt: empty set
plus: {1, 2}
0: empty set
s: {1}
x: {1, 2}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
PLUS(N, s(M)) → PLUS(N, M)
X(N, s(M)) → PLUS(x(N, M), N)
X(N, s(M)) → X(N, M)
AND(tt, X) → X
AND(tt, X) → U(X)
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
PLUS(N, s(M)) → PLUS(N, M)
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → PLUS(N, M)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
X(N, s(M)) → X(N, M)
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
X(N, s(M)) → X(N, M)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
and(tt, X) → X
plus(N, 0) → N
plus(N, s(M)) → s(plus(N, M))
x(N, 0) → 0
x(N, s(M)) → plus(x(N, M), N)
and(tt, x0)
plus(x0, 0)
plus(x0, s(x1))
x(x0, 0)
x(x0, s(x1))