(VAR M N) (STRATEGY CONTEXTSENSITIVE (U11 1) (tt) (U12 1) (s 1) (plus 1 2) (U21 1) (U22 1) (x 1 2) (0) ) (RULES U11(tt,M,N) -> U12(tt,M,N) U12(tt,M,N) -> s(plus(N,M)) U21(tt,M,N) -> U22(tt,M,N) U22(tt,M,N) -> plus(x(N,M),N) plus(N,0) -> N plus(N,s(M)) -> U11(tt,M,N) x(N,0) -> 0 x(N,s(M)) -> U21(tt,M,N) ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for MYNAT_nosorts_noand: -> Dependency pairs: nF_U11(tt,M,N) -> nF_U12(tt,M,N) nF_U12(tt,M,N) -> nF_plus(N,M) nF_U12(tt,M,N) -> N nF_U12(tt,M,N) -> M nF_U21(tt,M,N) -> nF_U22(tt,M,N) nF_U22(tt,M,N) -> nF_plus(x(N,M),N) nF_U22(tt,M,N) -> nF_x(N,M) nF_U22(tt,M,N) -> N nF_U22(tt,M,N) -> M nF_plus(N,s(M)) -> nF_U11(tt,M,N) nF_x(N,s(M)) -> nF_U21(tt,M,N) -> Proof of termination for MYNAT_nosorts_noand_1_1: -> -> Dependency pairs in cycle: nF_U21(tt,M,N) -> nF_U22(tt,M,N) nF_x(N,s(M)) -> nF_U21(tt,M,N) nF_U22(tt,M,N) -> nF_x(N,M) Termination proved: Cycles verify subterm criterion. -> Proof of termination for MYNAT_nosorts_noand_1_2: -> -> Dependency pairs in cycle: nF_U11(tt,M,N) -> nF_U12(tt,M,N) nF_plus(N,s(M)) -> nF_U11(tt,M,N) nF_U12(tt,M,N) -> nF_plus(N,M) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.