(VAR V2 N M V1) (STRATEGY CONTEXTSENSITIVE (U11 1) (tt) (U12 1) (isNat) (U21 1) (U31 1) (U32 1) (U41 1) (U51 1) (U52 1) (s 1) (plus 1 2) (U61 1) (0) (U71 1) (U72 1) (x 1 2) ) (RULES U11(tt,V2) -> U12(isNat(V2)) U12(tt) -> tt U21(tt) -> tt U31(tt,V2) -> U32(isNat(V2)) U32(tt) -> tt U41(tt,N) -> N U51(tt,M,N) -> U52(isNat(N),M,N) U52(tt,M,N) -> s(plus(N,M)) U61(tt) -> 0 U71(tt,M,N) -> U72(isNat(N),M,N) U72(tt,M,N) -> plus(x(N,M),N) isNat(0) -> tt isNat(plus(V1,V2)) -> U11(isNat(V1),V2) isNat(s(V1)) -> U21(isNat(V1)) isNat(x(V1,V2)) -> U31(isNat(V1),V2) plus(N,0) -> U41(isNat(N),N) plus(N,s(M)) -> U51(isNat(M),M,N) x(N,0) -> U61(isNat(N)) x(N,s(M)) -> U71(isNat(M),M,N) ) Proving termination of context-sensitive rewriting for MYNAT_nokinds_noand: -> Dependency pairs: nF_U11(tt,V2) -> nF_U12(isNat(V2)) nF_U11(tt,V2) -> nF_isNat(V2) nF_U31(tt,V2) -> nF_U32(isNat(V2)) nF_U31(tt,V2) -> nF_isNat(V2) nF_U41(tt,N) -> N nF_U51(tt,M,N) -> nF_U52(isNat(N),M,N) nF_U51(tt,M,N) -> nF_isNat(N) nF_U52(tt,M,N) -> nF_plus(N,M) nF_U52(tt,M,N) -> N nF_U52(tt,M,N) -> M nF_U71(tt,M,N) -> nF_U72(isNat(N),M,N) nF_U71(tt,M,N) -> nF_isNat(N) nF_U72(tt,M,N) -> nF_plus(x(N,M),N) nF_U72(tt,M,N) -> nF_x(N,M) nF_U72(tt,M,N) -> N nF_U72(tt,M,N) -> M nF_isNat(plus(V1,V2)) -> nF_U11(isNat(V1),V2) nF_isNat(plus(V1,V2)) -> nF_isNat(V1) nF_isNat(s(V1)) -> nF_U21(isNat(V1)) nF_isNat(s(V1)) -> nF_isNat(V1) nF_isNat(x(V1,V2)) -> nF_U31(isNat(V1),V2) nF_isNat(x(V1,V2)) -> nF_isNat(V1) nF_plus(N,0) -> nF_U41(isNat(N),N) nF_plus(N,0) -> nF_isNat(N) nF_plus(N,s(M)) -> nF_U51(isNat(M),M,N) nF_plus(N,s(M)) -> nF_isNat(M) nF_x(N,0) -> nF_U61(isNat(N)) nF_x(N,0) -> nF_isNat(N) nF_x(N,s(M)) -> nF_U71(isNat(M),M,N) nF_x(N,s(M)) -> nF_isNat(M) -> Proof of termination for MYNAT_nokinds_noand_1_1: -> -> Dependency pairs in cycle: nF_U71(tt,M,N) -> nF_U72(isNat(N),M,N) nF_x(N,s(M)) -> nF_U71(isNat(M),M,N) nF_U72(tt,M,N) -> nF_x(N,M) Termination proved: Cycles verify subterm criterion. -> Proof of termination for MYNAT_nokinds_noand_1_2: -> -> Dependency pairs in cycle: nF_U51(tt,M,N) -> nF_U52(isNat(N),M,N) nF_plus(N,s(M)) -> nF_U51(isNat(M),M,N) nF_U52(tt,M,N) -> nF_plus(N,M) Termination proved: Cycles verify subterm criterion. -> Proof of termination for MYNAT_nokinds_noand_1_3: -> -> Dependency pairs in cycle: nF_U11(tt,V2) -> nF_isNat(V2) nF_isNat(plus(V1,V2)) -> nF_U11(isNat(V1),V2) nF_isNat(x(V1,V2)) -> nF_isNat(V1) nF_isNat(s(V1)) -> nF_isNat(V1) nF_isNat(plus(V1,V2)) -> nF_isNat(V1) nF_U31(tt,V2) -> nF_isNat(V2) nF_isNat(x(V1,V2)) -> nF_U31(isNat(V1),V2) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.