U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U11: {1}
tt: empty set
U12: {1}
isNat: empty set
U13: {1}
U21: {1}
U22: {1}
U31: {1}
U32: {1}
U33: {1}
U41: {1}
U51: {1}
s: {1}
plus: {1, 2}
U61: {1}
0: empty set
U71: {1}
x: {1, 2}
and: {1}
isNatKind: empty set
↳ CSR
↳ CSDependencyPairsProof
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U11: {1}
tt: empty set
U12: {1}
isNat: empty set
U13: {1}
U21: {1}
U22: {1}
U31: {1}
U32: {1}
U33: {1}
U41: {1}
U51: {1}
s: {1}
plus: {1, 2}
U61: {1}
0: empty set
U71: {1}
x: {1, 2}
and: {1}
isNatKind: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
U111(tt, V1, V2) → U121(isNat(V1), V2)
U111(tt, V1, V2) → ISNAT(V1)
U121(tt, V2) → U131(isNat(V2))
U121(tt, V2) → ISNAT(V2)
U211(tt, V1) → U221(isNat(V1))
U211(tt, V1) → ISNAT(V1)
U311(tt, V1, V2) → U321(isNat(V1), V2)
U311(tt, V1, V2) → ISNAT(V1)
U321(tt, V2) → U331(isNat(V2))
U321(tt, V2) → ISNAT(V2)
U511(tt, M, N) → PLUS(N, M)
U711(tt, M, N) → PLUS(x(N, M), N)
U711(tt, M, N) → X(N, M)
ISNAT(plus(V1, V2)) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ISNAT(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNAT(plus(V1, V2)) → ISNATKIND(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
ISNAT(s(V1)) → ISNATKIND(V1)
ISNAT(x(V1, V2)) → U311(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ISNAT(x(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNAT(x(V1, V2)) → ISNATKIND(V1)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)
ISNATKIND(x(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNATKIND(x(V1, V2)) → ISNATKIND(V1)
PLUS(N, 0) → U411(and(isNat(N), isNatKind(N)), N)
PLUS(N, 0) → AND(isNat(N), isNatKind(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U511(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
PLUS(N, s(M)) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
X(N, 0) → U611(and(isNat(N), isNatKind(N)))
X(N, 0) → AND(isNat(N), isNatKind(N))
X(N, 0) → ISNAT(N)
X(N, s(M)) → U711(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
X(N, s(M)) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
X(N, s(M)) → AND(isNat(M), isNatKind(M))
X(N, s(M)) → ISNAT(M)
U411(tt, N) → N
U511(tt, M, N) → N
U511(tt, M, N) → M
U711(tt, M, N) → N
U711(tt, M, N) → M
AND(tt, X) → X
isNatKind(V2)
and on positions {1}
U411(tt, N) → U(N)
U511(tt, M, N) → U(N)
U511(tt, M, N) → U(M)
U711(tt, M, N) → U(N)
U711(tt, M, N) → U(M)
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
↳ QCSDP
U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
AND(tt, X) → U(X)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)
ISNATKIND(x(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNATKIND(x(V1, V2)) → ISNATKIND(V1)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
[x2, U713] > [plus2, U513] > [and2, s1] > U1 > ISNATKIND1
[x2, U713] > [plus2, U513] > [and2, s1] > isNatKind1 > ISNATKIND1
[x2, U713] > [plus2, U513] > [and2, s1] > U212 > isNat1 > ISNATKIND1
[x2, U713] > [plus2, U513] > [and2, s1] > U212 > U221 > ISNATKIND1
[x2, U713] > [plus2, U513] > AND2 > U1 > ISNATKIND1
[x2, U713] > [plus2, U513] > U412 > ISNATKIND1
[x2, U713] > [plus2, U513] > U113 > U122 > isNat1 > ISNATKIND1
[x2, U713] > [plus2, U513] > U113 > U122 > U131 > ISNATKIND1
[x2, U713] > U313 > U322 > isNat1 > ISNATKIND1
[x2, U713] > U313 > U322 > U331 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U1 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > isNatKind1 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U412 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U122 > isNat1 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U122 > U131 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U221 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U322 > isNat1 > ISNATKIND1
[x2, U713] > U611 > [tt, 0] > U322 > U331 > ISNATKIND1
plus2: [2,1]
U611: multiset
ISNATKIND1: multiset
U322: multiset
U113: multiset
x2: [1,2]
U122: multiset
and2: multiset
isNatKind1: multiset
0: multiset
U212: [1,2]
U313: multiset
U221: multiset
tt: multiset
U1: multiset
AND2: multiset
U412: [2,1]
U131: multiset
s1: [1]
U331: multiset
isNat1: multiset
U513: [2,3,1]
U713: [3,2,1]
and(tt, X) → X
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U41(tt, N) → N
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U51(tt, M, N) → s(plus(N, M))
U(and(x_0, x_1)) → U(x_0)
U(isNatKind(V2)) → ISNATKIND(V2)
ISNATKIND(plus(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
AND(tt, X) → U(X)
ISNATKIND(plus(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)
ISNATKIND(x(V1, V2)) → AND(isNatKind(V1), isNatKind(V2))
ISNATKIND(x(V1, V2)) → ISNATKIND(V1)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
↳ QCSDP
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
U121(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U111(tt, V1, V2) → U121(isNat(V1), V2)
U111(tt, V1, V2) → ISNAT(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → ISNAT(V1)
ISNAT(x(V1, V2)) → U311(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U311(tt, V1, V2) → U321(isNat(V1), V2)
U321(tt, V2) → ISNAT(V2)
U311(tt, V1, V2) → ISNAT(V1)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
[x2, U713] > [plus2, U513] > U11^13 > [U12^12, ISNAT1]
[x2, U713] > [plus2, U513] > U11^13 > isNat1
[x2, U713] > [plus2, U513] > [and2, s1] > isNatKind1 > tt > [U12^12, ISNAT1]
[x2, U713] > [plus2, U513] > [and2, s1] > isNatKind1 > tt > U221
[x2, U713] > [plus2, U513] > [and2, s1] > isNatKind1 > tt > U322 > isNat1
[x2, U713] > [plus2, U513] > [and2, s1] > isNatKind1 > tt > U322 > U331
[x2, U713] > [plus2, U513] > [and2, s1] > U21^12 > [U12^12, ISNAT1]
[x2, U713] > [plus2, U513] > [and2, s1] > U212 > isNat1
[x2, U713] > [plus2, U513] > [and2, s1] > U212 > U221
[x2, U713] > [plus2, U513] > [0, U412, U611] > isNatKind1 > tt > [U12^12, ISNAT1]
[x2, U713] > [plus2, U513] > [0, U412, U611] > isNatKind1 > tt > U221
[x2, U713] > [plus2, U513] > [0, U412, U611] > isNatKind1 > tt > U322 > isNat1
[x2, U713] > [plus2, U513] > [0, U412, U611] > isNatKind1 > tt > U322 > U331
[x2, U713] > [plus2, U513] > U113 > U122 > U131 > tt > [U12^12, ISNAT1]
[x2, U713] > [plus2, U513] > U113 > U122 > U131 > tt > U221
[x2, U713] > [plus2, U513] > U113 > U122 > U131 > tt > U322 > isNat1
[x2, U713] > [plus2, U513] > U113 > U122 > U131 > tt > U322 > U331
[x2, U713] > U31^13 > isNat1
[x2, U713] > U31^13 > U32^12 > [U12^12, ISNAT1]
[x2, U713] > U313 > U322 > isNat1
[x2, U713] > U313 > U322 > U331
U12^12: multiset
U322: multiset
U21^12: multiset
U122: multiset
x2: [1,2]
and2: multiset
U212: multiset
U313: multiset
tt: multiset
s1: [1]
isNat1: multiset
U513: [3,2,1]
plus2: [1,2]
U611: multiset
U31^13: multiset
U11^13: multiset
U113: multiset
U32^12: multiset
isNatKind1: multiset
0: multiset
ISNAT1: multiset
U221: [1]
U412: multiset
U131: [1]
U331: [1]
U713: [3,2,1]
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U41(tt, N) → N
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U51(tt, M, N) → s(plus(N, M))
U121(tt, V2) → ISNAT(V2)
ISNAT(plus(V1, V2)) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U111(tt, V1, V2) → U121(isNat(V1), V2)
U111(tt, V1, V2) → ISNAT(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → ISNAT(V1)
ISNAT(x(V1, V2)) → U311(and(isNatKind(V1), isNatKind(V2)), V1, V2)
U311(tt, V1, V2) → U321(isNat(V1), V2)
U321(tt, V2) → ISNAT(V2)
U311(tt, V1, V2) → ISNAT(V1)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
PLUS(N, s(M)) → U511(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U511(tt, M, N) → PLUS(N, M)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(N, s(M)) → U511(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
Used ordering: Combined order from the following AFS and order.
U511(tt, M, N) → PLUS(N, M)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
U511(tt, M, N) → PLUS(N, M)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
U711(tt, M, N) → X(N, M)
X(N, s(M)) → U711(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
X(N, s(M)) → U711(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
Used ordering: Combined order from the following AFS and order.
U711(tt, M, N) → X(N, M)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
U711(tt, M, N) → X(N, M)
U11(tt, V1, V2) → U12(isNat(V1), V2)
U12(tt, V2) → U13(isNat(V2))
U13(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V1, V2) → U32(isNat(V1), V2)
U32(tt, V2) → U33(isNat(V2))
U33(tt) → tt
U41(tt, N) → N
U51(tt, M, N) → s(plus(N, M))
U61(tt) → 0
U71(tt, M, N) → plus(x(N, M), N)
and(tt, X) → X
isNat(0) → tt
isNat(plus(V1, V2)) → U11(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNat(x(V1, V2)) → U31(and(isNatKind(V1), isNatKind(V2)), V1, V2)
isNatKind(0) → tt
isNatKind(plus(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
isNatKind(s(V1)) → isNatKind(V1)
isNatKind(x(V1, V2)) → and(isNatKind(V1), isNatKind(V2))
plus(N, 0) → U41(and(isNat(N), isNatKind(N)), N)
plus(N, s(M)) → U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
x(N, 0) → U61(and(isNat(N), isNatKind(N)))
x(N, s(M)) → U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)