Termination of the following Term Rewriting System could be proven:
Context-sensitive rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
The replacement map contains the following entries:zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
U21: {1}
U31: {1}
U41: {1}
U42: {1}
isNatIList: empty set
U51: {1}
U52: {1}
isNatList: empty set
U61: {1}
U62: {1}
isNat: empty set
s: {1}
length: {1}
nil: empty set
↳ CSR
↳ CSDependencyPairsProof
Context-sensitive rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
The replacement map contains the following entries:zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
U21: {1}
U31: {1}
U41: {1}
U42: {1}
isNatIList: empty set
U51: {1}
U52: {1}
isNatList: empty set
U61: {1}
U62: {1}
isNat: empty set
s: {1}
length: {1}
nil: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
Q-restricted context-sensitive dependency pair problem:
The symbols in {U11, U21, U31, U42, U52, s, length, U421, U521, LENGTH, U111, U211, U311} are replacing on all positions.
For all symbols f in {cons, U41, U51, U61, U62, U411, U511, U621, U611} we have µ(f) = {1}.
The symbols in {isNatIList, isNatList, isNat, ISNATILIST, ISNATLIST, ISNAT, U} are not replacing on any position.
The ordinary context-sensitive dependency pairs DPo are:
U411(tt, V2) → U421(isNatIList(V2))
U411(tt, V2) → ISNATILIST(V2)
U511(tt, V2) → U521(isNatList(V2))
U511(tt, V2) → ISNATLIST(V2)
U611(tt, L, N) → U621(isNat(N), L)
U611(tt, L, N) → ISNAT(N)
U621(tt, L) → LENGTH(L)
ISNAT(length(V1)) → U111(isNatList(V1))
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → U211(isNat(V1))
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(V) → U311(isNatList(V))
ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → U411(isNat(V1), V2)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → U511(isNat(V1), V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
LENGTH(cons(N, L)) → U611(isNatList(L), L, N)
LENGTH(cons(N, L)) → ISNATLIST(L)
The collapsing dependency pairs are DPc:
U621(tt, L) → L
The hidden terms of R are:
zeros
Every hiding context is built from:none
Hence, the new unhiding pairs DPu are :
U621(tt, L) → U(L)
U(zeros) → ZEROS
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
Q is empty.
The approximation of the Context-Sensitive Dependency Graph contains 3 SCCs with 11 less nodes.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDP
Q-restricted context-sensitive dependency pair problem:
The symbols in {U11, U21, U31, U42, U52, s, length} are replacing on all positions.
For all symbols f in {cons, U41, U51, U61, U62, U511} we have µ(f) = {1}.
The symbols in {isNatIList, isNatList, isNat, ISNATLIST, ISNAT} are not replacing on any position.
The TRS P consists of the following rules:
ISNATLIST(cons(V1, V2)) → U511(isNat(V1), V2)
U511(tt, V2) → ISNATLIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
Q is empty.
The following rules are not useable and can be deleted:
zeros → cons(0, zeros)
U31(tt) → tt
U41(tt, x0) → U42(isNatIList(x0))
U42(tt) → tt
U61(tt, x0, x1) → U62(isNat(x1), x0)
U62(tt, x0) → s(length(x0))
isNatIList(x0) → U31(isNatList(x0))
isNatIList(zeros) → tt
isNatIList(cons(x0, x1)) → U41(isNat(x0), x1)
length(nil) → 0
length(cons(x0, x1)) → U61(isNatList(x1), x1, x0)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
Q-restricted context-sensitive dependency pair problem:
The symbols in {length, U11, s, U21, U52} are replacing on all positions.
For all symbols f in {cons, U51, U511} we have µ(f) = {1}.
The symbols in {isNat, isNatList, ISNATLIST, ISNAT} are not replacing on any position.
The TRS P consists of the following rules:
ISNATLIST(cons(V1, V2)) → U511(isNat(V1), V2)
U511(tt, V2) → ISNATLIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
The TRS R consists of the following rules:
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
isNat(s(V1)) → U21(isNat(V1))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U11(tt) → tt
Q is empty.
Using the order
Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( isNatList(x1) ) = | | + | | · | x1 |
M( U51(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( ISNATLIST(x1) ) = | 1 | + | | · | x1 |
M( U511(x1, x2) ) = | 1 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
the following usable rules
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
U11(tt) → tt
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U21(tt) → tt
could all be oriented weakly.
Since all dependency pairs and these rules are strongly conservative, this is sound.
Furthermore, the pairs
ISNATLIST(cons(V1, V2)) → U511(isNat(V1), V2)
U511(tt, V2) → ISNATLIST(V2)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
could be oriented strictly and thus removed.
All pairs have been removed.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
Q-restricted context-sensitive dependency pair problem:
The symbols in {length, U11, s, U21, U52} are replacing on all positions.
For all symbols f in {cons, U51} we have µ(f) = {1}.
The symbols in {isNat, isNatList} are not replacing on any position.
The TRS P consists of the following rules:
none
The TRS R consists of the following rules:
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
isNat(s(V1)) → U21(isNat(V1))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U11(tt) → tt
Q is empty.
The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
Q-restricted context-sensitive dependency pair problem:
The symbols in {U11, U21, U31, U42, U52, s, length, LENGTH} are replacing on all positions.
For all symbols f in {cons, U41, U51, U61, U62, U621, U611} we have µ(f) = {1}.
The symbols in {isNatIList, isNatList, isNat} are not replacing on any position.
The TRS P consists of the following rules:
U611(tt, L, N) → U621(isNat(N), L)
U621(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → U611(isNatList(L), L, N)
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
Q is empty.
Using the order
Polynomial Order [21,25] with Interpretation:
POL( U62(x1, x2) ) = 2x2 + 2
POL( LENGTH(x1) ) = 2x1
POL( U61(x1, ..., x3) ) = 2x1 + 2x2 + 1
POL( U621(x1, x2) ) = 2x2
POL( 0 ) = 2
POL( U51(x1, x2) ) = 2x2
POL( cons(x1, x2) ) = 2x2
POL( tt ) = 1
POL( U611(x1, ..., x3) ) = max{0, 2x1 + 2x2 - 1}
POL( isNatList(x1) ) = x1
POL( U52(x1) ) = 2x1
POL( zeros ) = max{0, -1}
POL( s(x1) ) = x1
POL( U11(x1) ) = max{0, 2x1 - 1}
POL( length(x1) ) = 2x1 + 1
POL( isNat(x1) ) = x1
POL( nil ) = 2
POL( U21(x1) ) = x1
the following usable rules
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U11(tt) → tt
U21(tt) → tt
zeros → cons(0, zeros)
could all be oriented weakly.
Furthermore, the pairs
U611(tt, L, N) → U621(isNat(N), L)
could be oriented strictly and thus removed.
The pairs
U621(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → U611(isNatList(L), L, N)
could only be oriented weakly and must be analyzed further.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
Q-restricted context-sensitive dependency pair problem:
The symbols in {U11, U21, U31, U42, U52, s, length, LENGTH} are replacing on all positions.
For all symbols f in {cons, U41, U51, U61, U62, U621, U611} we have µ(f) = {1}.
The symbols in {isNatIList, isNatList, isNat} are not replacing on any position.
The TRS P consists of the following rules:
U621(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → U611(isNatList(L), L, N)
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
Q is empty.
The approximation of the Context-Sensitive Dependency Graph contains 0 SCCs with 2 less nodes.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSUsableRulesProof
Q-restricted context-sensitive dependency pair problem:
The symbols in {U11, U21, U31, U42, U52, s, length} are replacing on all positions.
For all symbols f in {cons, U41, U51, U61, U62, U411} we have µ(f) = {1}.
The symbols in {isNatIList, isNatList, isNat, ISNATILIST} are not replacing on any position.
The TRS P consists of the following rules:
ISNATILIST(cons(V1, V2)) → U411(isNat(V1), V2)
U411(tt, V2) → ISNATILIST(V2)
The TRS R consists of the following rules:
zeros → cons(0, zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(V2))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(N), L)
U62(tt, L) → s(length(L))
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
isNatIList(V) → U31(isNatList(V))
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(isNat(V1), V2)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
length(nil) → 0
length(cons(N, L)) → U61(isNatList(L), L, N)
Q is empty.
The following rules are not useable and can be deleted:
zeros → cons(0, zeros)
U31(tt) → tt
U41(tt, x0) → U42(isNatIList(x0))
U42(tt) → tt
U61(tt, x0, x1) → U62(isNat(x1), x0)
U62(tt, x0) → s(length(x0))
isNatIList(x0) → U31(isNatList(x0))
isNatIList(zeros) → tt
isNatIList(cons(x0, x1)) → U41(isNat(x0), x1)
length(nil) → 0
length(cons(x0, x1)) → U61(isNatList(x1), x1, x0)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
Q-restricted context-sensitive dependency pair problem:
The symbols in {length, U11, s, U21, U52} are replacing on all positions.
For all symbols f in {cons, U51, U411} we have µ(f) = {1}.
The symbols in {isNat, isNatList, ISNATILIST} are not replacing on any position.
The TRS P consists of the following rules:
ISNATILIST(cons(V1, V2)) → U411(isNat(V1), V2)
U411(tt, V2) → ISNATILIST(V2)
The TRS R consists of the following rules:
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
isNat(s(V1)) → U21(isNat(V1))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U11(tt) → tt
Q is empty.
Using the order
Polynomial interpretation with max and min functions [25]:
POL(0) = 1
POL(ISNATILIST(x1)) = x1
POL(U11(x1)) = x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = x1 + x2
POL(U51(x1, x2)) = 1
POL(U52(x1)) = 1
POL(cons(x1, x2)) = 1 + x1 + x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 1 + x1
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 1
the following usable rules
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNat(s(V1)) → U21(isNat(V1))
U11(tt) → tt
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U21(tt) → tt
could all be oriented weakly.
Since all dependency pairs and these rules are strongly conservative, this is sound.
Furthermore, the pairs
ISNATILIST(cons(V1, V2)) → U411(isNat(V1), V2)
U411(tt, V2) → ISNATILIST(V2)
could be oriented strictly and thus removed.
All pairs have been removed.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ PIsEmptyProof
Q-restricted context-sensitive dependency pair problem:
The symbols in {length, U11, s, U21, U52} are replacing on all positions.
For all symbols f in {cons, U51} we have µ(f) = {1}.
The symbols in {isNat, isNatList} are not replacing on any position.
The TRS P consists of the following rules:
none
The TRS R consists of the following rules:
isNat(0) → tt
isNat(length(V1)) → U11(isNatList(V1))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(isNat(V1), V2)
isNat(s(V1)) → U21(isNat(V1))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(V2))
U52(tt) → tt
U11(tt) → tt
Q is empty.
The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.