Termination of the following Term Rewriting System could be proven:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
U12: {1}
isNatList: empty set
U21: {1}
U22: {1}
isNat: empty set
U31: {1}
U32: {1}
U41: {1}
U42: {1}
U43: {1}
isNatIList: empty set
U51: {1}
U52: {1}
U53: {1}
U61: {1}
s: {1}
length: {1}
and: {1}
isNatIListKind: empty set
isNatKind: empty set
nil: empty set


CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
U12: {1}
isNatList: empty set
U21: {1}
U22: {1}
isNat: empty set
U31: {1}
U32: {1}
U41: {1}
U42: {1}
U43: {1}
isNatIList: empty set
U51: {1}
U52: {1}
U53: {1}
U61: {1}
s: {1}
length: {1}
and: {1}
isNatIListKind: empty set
isNatKind: empty set
nil: empty set

Using Improved CS-DPs we result in the following initial Q-CSDP problem.

↳ CSR
  ↳ CSDependencyPairsProof
QCSDP
      ↳ QCSDependencyGraphProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length, U121, U221, U321, U431, U531, LENGTH} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, U111, U211, U311, U421, U411, U521, U511, U611, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATLIST, ISNAT, ISNATILIST, ISNATILISTKIND, ISNATKIND, U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

U111(tt, V1) → U121(isNatList(V1))
U111(tt, V1) → ISNATLIST(V1)
U211(tt, V1) → U221(isNat(V1))
U211(tt, V1) → ISNAT(V1)
U311(tt, V) → U321(isNatList(V))
U311(tt, V) → ISNATLIST(V)
U411(tt, V1, V2) → U421(isNat(V1), V2)
U411(tt, V1, V2) → ISNAT(V1)
U421(tt, V2) → U431(isNatIList(V2))
U421(tt, V2) → ISNATILIST(V2)
U511(tt, V1, V2) → U521(isNat(V1), V2)
U511(tt, V1, V2) → ISNAT(V1)
U521(tt, V2) → U531(isNatList(V2))
U521(tt, V2) → ISNATLIST(V2)
U611(tt, L) → LENGTH(L)
ISNAT(length(V1)) → U111(isNatIListKind(V1), V1)
ISNAT(length(V1)) → ISNATILISTKIND(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
ISNAT(s(V1)) → ISNATKIND(V1)
ISNATILIST(V) → U311(isNatIListKind(V), V)
ISNATILIST(V) → ISNATILISTKIND(V)
ISNATILIST(cons(V1, V2)) → U411(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
ISNATILIST(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
ISNATILIST(cons(V1, V2)) → ISNATKIND(V1)
ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
ISNATILISTKIND(cons(V1, V2)) → ISNATKIND(V1)
ISNATKIND(length(V1)) → ISNATILISTKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)
ISNATLIST(cons(V1, V2)) → U511(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
ISNATLIST(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
ISNATLIST(cons(V1, V2)) → ISNATKIND(V1)
LENGTH(cons(N, L)) → U611(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
LENGTH(cons(N, L)) → AND(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
LENGTH(cons(N, L)) → AND(isNatList(L), isNatIListKind(L))
LENGTH(cons(N, L)) → ISNATLIST(L)

The collapsing dependency pairs are DPc:

U611(tt, L) → L
AND(tt, X) → X


The hidden terms of R are:

zeros
isNatIListKind(V2)

Every hiding context is built from:

and on positions {1}

Hence, the new unhiding pairs DPu are :

U611(tt, L) → U(L)
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(zeros) → ZEROS
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 4 SCCs with 20 less nodes.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
QCSDP
            ↳ QCSDPReductionPairProof
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, U, ISNATILISTKIND, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)
ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
ISNATILISTKIND(cons(V1, V2)) → ISNATKIND(V1)
ISNATKIND(length(V1)) → ISNATILISTKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

Using the order
Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(AND(x1, x2)) = x1 + x2   
POL(ISNATILISTKIND(x1)) = x1   
POL(ISNATKIND(x1)) = x1   
POL(U(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatIListKind(x1)) = x1   
POL(isNatKind(x1)) = x1   
POL(isNatList(x1)) = x1   
POL(length(x1)) = 1 + x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   

the following usable rules

and(tt, X) → X
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
zeroscons(0, zeros)
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
U61(tt, L) → s(length(L))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt

could all be oriented weakly.
Furthermore, the pairs

ISNATKIND(length(V1)) → ISNATILISTKIND(V1)

could be oriented strictly and thus removed.
The pairs

AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)
ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
ISNATILISTKIND(cons(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)

could only be oriented weakly and must be analyzed further.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
QCSDP
                ↳ QCSDependencyGraphProof
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, U, ISNATILISTKIND, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)
ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
ISNATILISTKIND(cons(V1, V2)) → ISNATKIND(V1)
ISNATKIND(s(V1)) → ISNATKIND(V1)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 2 SCCs with 1 less node.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
QCSDP
                      ↳ QCSDPSubtermProof
                    ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATKIND} are not replacing on any position.

The TRS P consists of the following rules:

ISNATKIND(s(V1)) → ISNATKIND(V1)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(s(V1)) → ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1

Subterm Order


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
                      ↳ QCSDPSubtermProof
QCSDP
                          ↳ PIsEmptyProof
                    ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind} are not replacing on any position.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.

↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
QCSDP
                      ↳ QCSDPInstantiationProcessor
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, U, ISNATILISTKIND} are not replacing on any position.

The TRS P consists of the following rules:

U(and(x_0, x_1)) → U(x_0)
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)
ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
AND(tt, X) → U(X)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

Using the Context-Sensitive Instantiation Processor
the pair AND(tt, X) → U(X)
was transformed to the following new pairs:

AND(tt, isNatIListKind(z1)) → U(isNatIListKind(z1))



↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
                    ↳ QCSDP
                      ↳ QCSDPInstantiationProcessor
QCSDP
                          ↳ QCSDependencyGraphProof
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, U, ISNATILISTKIND} are not replacing on any position.

The TRS P consists of the following rules:

U(and(x_0, x_1)) → U(x_0)
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)
ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
AND(tt, isNatIListKind(z1)) → U(isNatIListKind(z1))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

The approximation of the Context-Sensitive Dependency Graph contains 2 SCCs.
The rules AND(tt, isNatIListKind(z0)) → U(isNatIListKind(z0)) and U(and(x0, x1)) → U(x0) form no chain, because ECapµ(U(isNatIListKind(z0))) = U(isNatIListKind(z0)) does not unify with U(and(x0, x1)).

↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
                    ↳ QCSDP
                      ↳ QCSDPInstantiationProcessor
                        ↳ QCSDP
                          ↳ QCSDependencyGraphProof
                            ↳ AND
QCSDP
                                ↳ QCSDPForwardInstantiationProcessor
                              ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATILISTKIND, U} are not replacing on any position.

The TRS P consists of the following rules:

ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
AND(tt, isNatIListKind(z1)) → U(isNatIListKind(z1))
U(isNatIListKind(V2)) → ISNATILISTKIND(V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

Using the Context-Sensitive Forward Instantiation Processor
the pair U(isNatIListKind(V2)) → ISNATILISTKIND(V2)
was transformed to the following new pairs:

U(isNatIListKind(cons(z0, z1))) → ISNATILISTKIND(cons(z0, z1))



↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
                    ↳ QCSDP
                      ↳ QCSDPInstantiationProcessor
                        ↳ QCSDP
                          ↳ QCSDependencyGraphProof
                            ↳ AND
                              ↳ QCSDP
                                ↳ QCSDPForwardInstantiationProcessor
QCSDP
                                    ↳ QCSDPForwardInstantiationProcessor
                              ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATILISTKIND, U} are not replacing on any position.

The TRS P consists of the following rules:

ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
AND(tt, isNatIListKind(z1)) → U(isNatIListKind(z1))
U(isNatIListKind(cons(z0, z1))) → ISNATILISTKIND(cons(z0, z1))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

Using the Context-Sensitive Forward Instantiation Processor
the pair AND(tt, isNatIListKind(z1)) → U(isNatIListKind(z1))
was transformed to the following new pairs:

AND(tt, isNatIListKind(cons(z0, z1))) → U(isNatIListKind(cons(z0, z1)))



↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
                    ↳ QCSDP
                      ↳ QCSDPInstantiationProcessor
                        ↳ QCSDP
                          ↳ QCSDependencyGraphProof
                            ↳ AND
                              ↳ QCSDP
                                ↳ QCSDPForwardInstantiationProcessor
                                  ↳ QCSDP
                                    ↳ QCSDPForwardInstantiationProcessor
QCSDP
                              ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, AND} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATILISTKIND, U} are not replacing on any position.

The TRS P consists of the following rules:

ISNATILISTKIND(cons(V1, V2)) → AND(isNatKind(V1), isNatIListKind(V2))
U(isNatIListKind(cons(z0, z1))) → ISNATILISTKIND(cons(z0, z1))
AND(tt, isNatIListKind(cons(z0, z1))) → U(isNatIListKind(cons(z0, z1)))

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
            ↳ QCSDPReductionPairProof
              ↳ QCSDP
                ↳ QCSDependencyGraphProof
                  ↳ AND
                    ↳ QCSDP
                    ↳ QCSDP
                      ↳ QCSDPInstantiationProcessor
                        ↳ QCSDP
                          ↳ QCSDependencyGraphProof
                            ↳ AND
                              ↳ QCSDP
QCSDP
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, U} are not replacing on any position.

The TRS P consists of the following rules:

U(and(x_0, x_1)) → U(x_0)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
QCSDP
          ↳ QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, U511, U521, U111, U211} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATLIST, ISNAT} are not replacing on any position.

The TRS P consists of the following rules:

ISNATLIST(cons(V1, V2)) → U511(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
U511(tt, V1, V2) → U521(isNat(V1), V2)
U521(tt, V2) → ISNATLIST(V2)
U511(tt, V1, V2) → ISNAT(V1)
ISNAT(length(V1)) → U111(isNatIListKind(V1), V1)
U111(tt, V1) → ISNATLIST(V1)
ISNAT(s(V1)) → U211(isNatKind(V1), V1)
U211(tt, V1) → ISNAT(V1)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
QCSDP
          ↳ QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length, LENGTH} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, U611} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind} are not replacing on any position.

The TRS P consists of the following rules:

LENGTH(cons(N, L)) → U611(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
U611(tt, L) → LENGTH(L)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.


↳ CSR
  ↳ CSDependencyPairsProof
    ↳ QCSDP
      ↳ QCSDependencyGraphProof
        ↳ AND
          ↳ QCSDP
          ↳ QCSDP
          ↳ QCSDP
QCSDP
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {U12, U22, U32, U43, U53, s, length} are replacing on all positions.
For all symbols f in {cons, U11, U21, U31, U41, U42, U51, U52, U61, and, U421, U411} we have µ(f) = {1}.
The symbols in {isNatList, isNat, isNatIList, isNatIListKind, isNatKind, ISNATILIST} are not replacing on any position.

The TRS P consists of the following rules:

U411(tt, V1, V2) → U421(isNat(V1), V2)
U421(tt, V2) → ISNATILIST(V2)
ISNATILIST(cons(V1, V2)) → U411(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)

The TRS R consists of the following rules:

zeroscons(0, zeros)
U11(tt, V1) → U12(isNatList(V1))
U12(tt) → tt
U21(tt, V1) → U22(isNat(V1))
U22(tt) → tt
U31(tt, V) → U32(isNatList(V))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(V1), V2)
U42(tt, V2) → U43(isNatIList(V2))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(V1), V2)
U52(tt, V2) → U53(isNatList(V2))
U53(tt) → tt
U61(tt, L) → s(length(L))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → U11(isNatIListKind(V1), V1)
isNat(s(V1)) → U21(isNatKind(V1), V1)
isNatIList(V) → U31(isNatIListKind(V), V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → U41(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
isNatIListKind(nil) → tt
isNatIListKind(zeros) → tt
isNatIListKind(cons(V1, V2)) → and(isNatKind(V1), isNatIListKind(V2))
isNatKind(0) → tt
isNatKind(length(V1)) → isNatIListKind(V1)
isNatKind(s(V1)) → isNatKind(V1)
isNatList(nil) → tt
isNatList(cons(V1, V2)) → U51(and(isNatKind(V1), isNatIListKind(V2)), V1, V2)
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

We applied the Zantema transformation [34] to transform the context-sensitive TRS to a usual TRS.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
QTRS
      ↳ DependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

U511(tt, V1, V2) → A(V1)
U211(tt, V1) → ISNAT(a(V1))
AND(tt, X) → A(X)
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
U311(tt, V) → A(V)
U611(tt, L) → A(L)
ISNATILIST(V) → ISNATILISTKIND(a(V))
ISNATILISTKIND(consInact(V1, V2)) → A(V1)
U611(tt, L) → LENGTH(a(L))
ISNATLIST(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATKIND(sInact(V1)) → A(V1)
ISNATKIND(lengthInact(V1)) → ISNATILISTKIND(a(V1))
U521(tt, V2) → A(V2)
U421(tt, V2) → U431(isNatIList(a(V2)))
U411(tt, V1, V2) → A(V1)
ISNAT(lengthInact(V1)) → A(V1)
LENGTH(cons(N, L)) → ISNAT(N)
U111(tt, V1) → ISNATLIST(a(V1))
A(sInact(x1)) → S(x1)
A(isNatKindInact(x1)) → ISNATKIND(x1)
U521(tt, V2) → ISNATLIST(a(V2))
LENGTH(nil) → 01
ISNATILIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(consInact(x1, x2)) → CONS(x1, x2)
LENGTH(cons(N, L)) → A(L)
ISNATKIND(lengthInact(V1)) → A(V1)
U411(tt, V1, V2) → A(V2)
U311(tt, V) → U321(isNatList(a(V)))
U311(tt, V) → ISNATLIST(a(V))
LENGTH(cons(N, L)) → AND(isNatList(a(L)), isNatIListKindInact(a(L)))
ISNATILIST(consInact(V1, V2)) → A(V2)
A(andInact(x1, x2)) → AND(x1, x2)
ISNATILIST(consInact(V1, V2)) → U411(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
A(0Inact) → 01
A(zerosInact) → ZEROS
ISNATLIST(consInact(V1, V2)) → A(V1)
U211(tt, V1) → A(V1)
U421(tt, V2) → ISNATILIST(a(V2))
U511(tt, V1, V2) → U521(isNat(a(V1)), a(V2))
ISNATILIST(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
U111(tt, V1) → A(V1)
ISNAT(sInact(V1)) → ISNATKIND(a(V1))
ISNATILIST(V) → U311(isNatIListKind(a(V)), a(V))
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
A(nilInact) → NIL
LENGTH(cons(N, L)) → U611(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
ISNAT(sInact(V1)) → U211(isNatKind(a(V1)), a(V1))
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
U511(tt, V1, V2) → A(V2)
LENGTH(cons(N, L)) → ISNATLIST(a(L))
ISNATLIST(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
ISNAT(lengthInact(V1)) → ISNATILISTKIND(a(V1))
ISNAT(lengthInact(V1)) → U111(isNatIListKind(a(V1)), a(V1))
U111(tt, V1) → U121(isNatList(a(V1)))
ISNATILIST(consInact(V1, V2)) → A(V1)
U211(tt, V1) → U221(isNat(a(V1)))
U511(tt, V1, V2) → ISNAT(a(V1))
U521(tt, V2) → U531(isNatList(a(V2)))
U411(tt, V1, V2) → U421(isNat(a(V1)), a(V2))
ISNAT(sInact(V1)) → A(V1)
ISNATILIST(V) → A(V)
U411(tt, V1, V2) → ISNAT(a(V1))
U611(tt, L) → S(length(a(L)))
ZEROSCONS(0, zerosInact)
LENGTH(cons(N, L)) → AND(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N)))
U421(tt, V2) → A(V2)
A(lengthInact(x1)) → LENGTH(x1)
ZEROS01
ISNATLIST(consInact(V1, V2)) → U511(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
ISNATILISTKIND(consInact(V1, V2)) → A(V2)

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

U511(tt, V1, V2) → A(V1)
U211(tt, V1) → ISNAT(a(V1))
AND(tt, X) → A(X)
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
U311(tt, V) → A(V)
U611(tt, L) → A(L)
ISNATILIST(V) → ISNATILISTKIND(a(V))
ISNATILISTKIND(consInact(V1, V2)) → A(V1)
U611(tt, L) → LENGTH(a(L))
ISNATLIST(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATKIND(sInact(V1)) → A(V1)
ISNATKIND(lengthInact(V1)) → ISNATILISTKIND(a(V1))
U521(tt, V2) → A(V2)
U421(tt, V2) → U431(isNatIList(a(V2)))
U411(tt, V1, V2) → A(V1)
ISNAT(lengthInact(V1)) → A(V1)
LENGTH(cons(N, L)) → ISNAT(N)
U111(tt, V1) → ISNATLIST(a(V1))
A(sInact(x1)) → S(x1)
A(isNatKindInact(x1)) → ISNATKIND(x1)
U521(tt, V2) → ISNATLIST(a(V2))
LENGTH(nil) → 01
ISNATILIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(consInact(x1, x2)) → CONS(x1, x2)
LENGTH(cons(N, L)) → A(L)
ISNATKIND(lengthInact(V1)) → A(V1)
U411(tt, V1, V2) → A(V2)
U311(tt, V) → U321(isNatList(a(V)))
U311(tt, V) → ISNATLIST(a(V))
LENGTH(cons(N, L)) → AND(isNatList(a(L)), isNatIListKindInact(a(L)))
ISNATILIST(consInact(V1, V2)) → A(V2)
A(andInact(x1, x2)) → AND(x1, x2)
ISNATILIST(consInact(V1, V2)) → U411(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
A(0Inact) → 01
A(zerosInact) → ZEROS
ISNATLIST(consInact(V1, V2)) → A(V1)
U211(tt, V1) → A(V1)
U421(tt, V2) → ISNATILIST(a(V2))
U511(tt, V1, V2) → U521(isNat(a(V1)), a(V2))
ISNATILIST(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
U111(tt, V1) → A(V1)
ISNAT(sInact(V1)) → ISNATKIND(a(V1))
ISNATILIST(V) → U311(isNatIListKind(a(V)), a(V))
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
A(nilInact) → NIL
LENGTH(cons(N, L)) → U611(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
ISNAT(sInact(V1)) → U211(isNatKind(a(V1)), a(V1))
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
U511(tt, V1, V2) → A(V2)
LENGTH(cons(N, L)) → ISNATLIST(a(L))
ISNATLIST(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
ISNAT(lengthInact(V1)) → ISNATILISTKIND(a(V1))
ISNAT(lengthInact(V1)) → U111(isNatIListKind(a(V1)), a(V1))
U111(tt, V1) → U121(isNatList(a(V1)))
ISNATILIST(consInact(V1, V2)) → A(V1)
U211(tt, V1) → U221(isNat(a(V1)))
U511(tt, V1, V2) → ISNAT(a(V1))
U521(tt, V2) → U531(isNatList(a(V2)))
U411(tt, V1, V2) → U421(isNat(a(V1)), a(V2))
ISNAT(sInact(V1)) → A(V1)
ISNATILIST(V) → A(V)
U411(tt, V1, V2) → ISNAT(a(V1))
U611(tt, L) → S(length(a(L)))
ZEROSCONS(0, zerosInact)
LENGTH(cons(N, L)) → AND(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N)))
U421(tt, V2) → A(V2)
A(lengthInact(x1)) → LENGTH(x1)
ZEROS01
ISNATLIST(consInact(V1, V2)) → U511(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
ISNATILISTKIND(consInact(V1, V2)) → A(V2)

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 27 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

U511(tt, V1, V2) → A(V1)
U211(tt, V1) → ISNAT(a(V1))
AND(tt, X) → A(X)
LENGTH(cons(N, L)) → U611(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
U611(tt, L) → A(L)
ISNAT(sInact(V1)) → U211(isNatKind(a(V1)), a(V1))
ISNATILISTKIND(consInact(V1, V2)) → A(V1)
U611(tt, L) → LENGTH(a(L))
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
U511(tt, V1, V2) → A(V2)
ISNATLIST(consInact(V1, V2)) → ISNATKIND(a(V1))
LENGTH(cons(N, L)) → ISNATLIST(a(L))
ISNATKIND(sInact(V1)) → A(V1)
ISNATLIST(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
ISNAT(lengthInact(V1)) → ISNATILISTKIND(a(V1))
ISNAT(lengthInact(V1)) → U111(isNatIListKind(a(V1)), a(V1))
ISNATKIND(lengthInact(V1)) → ISNATILISTKIND(a(V1))
U521(tt, V2) → A(V2)
ISNAT(lengthInact(V1)) → A(V1)
LENGTH(cons(N, L)) → ISNAT(N)
U511(tt, V1, V2) → ISNAT(a(V1))
U111(tt, V1) → ISNATLIST(a(V1))
A(isNatKindInact(x1)) → ISNATKIND(x1)
U521(tt, V2) → ISNATLIST(a(V2))
LENGTH(cons(N, L)) → A(L)
ISNATKIND(lengthInact(V1)) → A(V1)
ISNAT(sInact(V1)) → A(V1)
LENGTH(cons(N, L)) → AND(isNatList(a(L)), isNatIListKindInact(a(L)))
A(andInact(x1, x2)) → AND(x1, x2)
U211(tt, V1) → A(V1)
ISNATLIST(consInact(V1, V2)) → A(V1)
U511(tt, V1, V2) → U521(isNat(a(V1)), a(V2))
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
ISNAT(sInact(V1)) → ISNATKIND(a(V1))
U111(tt, V1) → A(V1)
LENGTH(cons(N, L)) → AND(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N)))
A(lengthInact(x1)) → LENGTH(x1)
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATILISTKIND(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → U511(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNAT(lengthInact(V1)) → ISNATILISTKIND(a(V1))
ISNAT(lengthInact(V1)) → U111(isNatIListKind(a(V1)), a(V1))
ISNATKIND(lengthInact(V1)) → ISNATILISTKIND(a(V1))
ISNAT(lengthInact(V1)) → A(V1)
ISNATKIND(lengthInact(V1)) → A(V1)
A(lengthInact(x1)) → LENGTH(x1)
The remaining pairs can at least be oriented weakly.

U511(tt, V1, V2) → A(V1)
U211(tt, V1) → ISNAT(a(V1))
AND(tt, X) → A(X)
LENGTH(cons(N, L)) → U611(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
U611(tt, L) → A(L)
ISNAT(sInact(V1)) → U211(isNatKind(a(V1)), a(V1))
ISNATILISTKIND(consInact(V1, V2)) → A(V1)
U611(tt, L) → LENGTH(a(L))
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
U511(tt, V1, V2) → A(V2)
ISNATLIST(consInact(V1, V2)) → ISNATKIND(a(V1))
LENGTH(cons(N, L)) → ISNATLIST(a(L))
ISNATKIND(sInact(V1)) → A(V1)
ISNATLIST(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
U521(tt, V2) → A(V2)
LENGTH(cons(N, L)) → ISNAT(N)
U511(tt, V1, V2) → ISNAT(a(V1))
U111(tt, V1) → ISNATLIST(a(V1))
A(isNatKindInact(x1)) → ISNATKIND(x1)
U521(tt, V2) → ISNATLIST(a(V2))
LENGTH(cons(N, L)) → A(L)
ISNAT(sInact(V1)) → A(V1)
LENGTH(cons(N, L)) → AND(isNatList(a(L)), isNatIListKindInact(a(L)))
A(andInact(x1, x2)) → AND(x1, x2)
U211(tt, V1) → A(V1)
ISNATLIST(consInact(V1, V2)) → A(V1)
U511(tt, V1, V2) → U521(isNat(a(V1)), a(V2))
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
ISNAT(sInact(V1)) → ISNATKIND(a(V1))
U111(tt, V1) → A(V1)
LENGTH(cons(N, L)) → AND(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N)))
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATILISTKIND(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → U511(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(0Inact) = 0   
POL(A(x1)) = x1   
POL(AND(x1, x2)) = x2   
POL(ISNAT(x1)) = x1   
POL(ISNATILISTKIND(x1)) = x1   
POL(ISNATKIND(x1)) = x1   
POL(ISNATLIST(x1)) = x1   
POL(LENGTH(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U111(x1, x2)) = x2   
POL(U12(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U211(x1, x2)) = x2   
POL(U22(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U511(x1, x2, x3)) = x2 + x3   
POL(U52(x1, x2)) = 0   
POL(U521(x1, x2)) = x2   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U611(x1, x2)) = x2   
POL(a(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(andInact(x1, x2)) = x2   
POL(cons(x1, x2)) = x1 + x2   
POL(consInact(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatIListKind(x1)) = x1   
POL(isNatIListKindInact(x1)) = x1   
POL(isNatKind(x1)) = x1   
POL(isNatKindInact(x1)) = x1   
POL(isNatList(x1)) = 0   
POL(length(x1)) = 1 + x1   
POL(lengthInact(x1)) = 1 + x1   
POL(nil) = 0   
POL(nilInact) = 0   
POL(s(x1)) = x1   
POL(sInact(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosInact) = 0   

The following usable rules [17] were oriented:

U22(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U12(tt) → tt
U11(tt, V1) → U12(isNatList(a(V1)))
zeroscons(0, zerosInact)
U61(tt, L) → s(length(a(L)))
U53(tt) → tt
U52(tt, V2) → U53(isNatList(a(V2)))
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
a(nilInact) → nil
nilnilInact
a(lengthInact(x1)) → length(x1)
00Inact
isNatIListKind(x1) → isNatIListKindInact(x1)
a(0Inact) → 0
isNatKind(x1) → isNatKindInact(x1)
a(x) → x
and(x1, x2) → andInact(x1, x2)
a(isNatKindInact(x1)) → isNatKind(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
and(tt, X) → a(X)
a(andInact(x1, x2)) → and(x1, x2)
isNatKind(sInact(V1)) → isNatKind(a(V1))
s(x1) → sInact(x1)
a(zerosInact) → zeros
length(x1) → lengthInact(x1)
a(sInact(x1)) → s(x1)
cons(x1, x2) → consInact(x1, x2)
zeroszerosInact
a(consInact(x1, x2)) → cons(x1, x2)
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
isNatKind(0Inact) → tt



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

U511(tt, V1, V2) → A(V1)
U211(tt, V1) → ISNAT(a(V1))
AND(tt, X) → A(X)
LENGTH(cons(N, L)) → U611(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
U611(tt, L) → A(L)
ISNAT(sInact(V1)) → U211(isNatKind(a(V1)), a(V1))
ISNATILISTKIND(consInact(V1, V2)) → A(V1)
U611(tt, L) → LENGTH(a(L))
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
ISNATLIST(consInact(V1, V2)) → ISNATKIND(a(V1))
U511(tt, V1, V2) → A(V2)
LENGTH(cons(N, L)) → ISNATLIST(a(L))
ISNATKIND(sInact(V1)) → A(V1)
ISNATLIST(consInact(V1, V2)) → A(V2)
ISNATLIST(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
U521(tt, V2) → A(V2)
LENGTH(cons(N, L)) → ISNAT(N)
U511(tt, V1, V2) → ISNAT(a(V1))
U111(tt, V1) → ISNATLIST(a(V1))
A(isNatKindInact(x1)) → ISNATKIND(x1)
U521(tt, V2) → ISNATLIST(a(V2))
LENGTH(cons(N, L)) → A(L)
ISNAT(sInact(V1)) → A(V1)
LENGTH(cons(N, L)) → AND(isNatList(a(L)), isNatIListKindInact(a(L)))
A(andInact(x1, x2)) → AND(x1, x2)
ISNATLIST(consInact(V1, V2)) → A(V1)
U211(tt, V1) → A(V1)
U511(tt, V1, V2) → U521(isNat(a(V1)), a(V2))
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
LENGTH(cons(N, L)) → AND(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N)))
U111(tt, V1) → A(V1)
ISNAT(sInact(V1)) → ISNATKIND(a(V1))
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATLIST(consInact(V1, V2)) → U511(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
ISNATILISTKIND(consInact(V1, V2)) → A(V2)

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 19 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ QDPOrderProof
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(sInact(V1)) → A(V1)
AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
ISNATILISTKIND(consInact(V1, V2)) → A(V1)
A(andInact(x1, x2)) → AND(x1, x2)
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
A(isNatKindInact(x1)) → ISNATKIND(x1)
ISNATILISTKIND(consInact(V1, V2)) → A(V2)
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNATILISTKIND(consInact(V1, V2)) → A(V1)
ISNATILISTKIND(consInact(V1, V2)) → ISNATKIND(a(V1))
ISNATILISTKIND(consInact(V1, V2)) → A(V2)
The remaining pairs can at least be oriented weakly.

ISNATKIND(sInact(V1)) → A(V1)
AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
A(andInact(x1, x2)) → AND(x1, x2)
A(isNatKindInact(x1)) → ISNATKIND(x1)
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(0Inact) = 0   
POL(A(x1)) = x1   
POL(AND(x1, x2)) = x2   
POL(ISNATILISTKIND(x1)) = 1 + x1   
POL(ISNATKIND(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 1 + x2   
POL(a(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(andInact(x1, x2)) = x2   
POL(cons(x1, x2)) = x1 + x2   
POL(consInact(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatIListKind(x1)) = 1 + x1   
POL(isNatIListKindInact(x1)) = 1 + x1   
POL(isNatKind(x1)) = x1   
POL(isNatKindInact(x1)) = x1   
POL(isNatList(x1)) = 1 + x1   
POL(length(x1)) = 1 + x1   
POL(lengthInact(x1)) = 1 + x1   
POL(nil) = 0   
POL(nilInact) = 0   
POL(s(x1)) = x1   
POL(sInact(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosInact) = 0   

The following usable rules [17] were oriented:

U22(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U12(tt) → tt
U11(tt, V1) → U12(isNatList(a(V1)))
zeroscons(0, zerosInact)
U61(tt, L) → s(length(a(L)))
U53(tt) → tt
U52(tt, V2) → U53(isNatList(a(V2)))
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
a(nilInact) → nil
nilnilInact
a(lengthInact(x1)) → length(x1)
00Inact
isNatIListKind(x1) → isNatIListKindInact(x1)
a(0Inact) → 0
isNatKind(x1) → isNatKindInact(x1)
a(x) → x
and(x1, x2) → andInact(x1, x2)
a(isNatKindInact(x1)) → isNatKind(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
and(tt, X) → a(X)
a(andInact(x1, x2)) → and(x1, x2)
isNatKind(sInact(V1)) → isNatKind(a(V1))
s(x1) → sInact(x1)
a(zerosInact) → zeros
length(x1) → lengthInact(x1)
a(sInact(x1)) → s(x1)
cons(x1, x2) → consInact(x1, x2)
zeroszerosInact
a(consInact(x1, x2)) → cons(x1, x2)
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
isNatKind(0Inact) → tt



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ QDPOrderProof
QDP
                              ↳ QDPOrderProof
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(sInact(V1)) → A(V1)
AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
A(andInact(x1, x2)) → AND(x1, x2)
A(isNatKindInact(x1)) → ISNATKIND(x1)
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A(isNatKindInact(x1)) → ISNATKIND(x1)
The remaining pairs can at least be oriented weakly.

ISNATKIND(sInact(V1)) → A(V1)
AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
A(andInact(x1, x2)) → AND(x1, x2)
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(0Inact) = 0   
POL(A(x1)) = x1   
POL(AND(x1, x2)) = x2   
POL(ISNATILISTKIND(x1)) = 0   
POL(ISNATKIND(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U51(x1, x2, x3)) = 1   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 0   
POL(a(x1)) = x1   
POL(and(x1, x2)) = x2   
POL(andInact(x1, x2)) = x2   
POL(cons(x1, x2)) = 0   
POL(consInact(x1, x2)) = 0   
POL(isNat(x1)) = 0   
POL(isNatIListKind(x1)) = 0   
POL(isNatIListKindInact(x1)) = 0   
POL(isNatKind(x1)) = 1 + x1   
POL(isNatKindInact(x1)) = 1 + x1   
POL(isNatList(x1)) = 1   
POL(length(x1)) = 0   
POL(lengthInact(x1)) = 0   
POL(nil) = 0   
POL(nilInact) = 0   
POL(s(x1)) = x1   
POL(sInact(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosInact) = 0   

The following usable rules [17] were oriented:

U22(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U12(tt) → tt
U11(tt, V1) → U12(isNatList(a(V1)))
zeroscons(0, zerosInact)
U61(tt, L) → s(length(a(L)))
U53(tt) → tt
U52(tt, V2) → U53(isNatList(a(V2)))
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
a(nilInact) → nil
nilnilInact
a(lengthInact(x1)) → length(x1)
00Inact
isNatIListKind(x1) → isNatIListKindInact(x1)
a(0Inact) → 0
isNatKind(x1) → isNatKindInact(x1)
a(x) → x
and(x1, x2) → andInact(x1, x2)
a(isNatKindInact(x1)) → isNatKind(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
and(tt, X) → a(X)
a(andInact(x1, x2)) → and(x1, x2)
isNatKind(sInact(V1)) → isNatKind(a(V1))
s(x1) → sInact(x1)
a(zerosInact) → zeros
length(x1) → lengthInact(x1)
a(sInact(x1)) → s(x1)
cons(x1, x2) → consInact(x1, x2)
zeroszerosInact
a(consInact(x1, x2)) → cons(x1, x2)
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
isNatKind(0Inact) → tt



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ QDPOrderProof
QDP
                                  ↳ DependencyGraphProof
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(sInact(V1)) → A(V1)
AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
A(andInact(x1, x2)) → AND(x1, x2)
ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
QDP
                                        ↳ QDPOrderProof
                                      ↳ QDP
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
A(andInact(x1, x2)) → AND(x1, x2)

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


A(andInact(x1, x2)) → AND(x1, x2)
The remaining pairs can at least be oriented weakly.

AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(0Inact) = 1   
POL(A(x1)) = 1 + x1   
POL(AND(x1, x2)) = 1 + x2   
POL(ISNATILISTKIND(x1)) = 1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 0   
POL(a(x1)) = 0   
POL(and(x1, x2)) = 0   
POL(andInact(x1, x2)) = 1 + x1 + x2   
POL(cons(x1, x2)) = 0   
POL(consInact(x1, x2)) = 0   
POL(isNat(x1)) = 1 + x1   
POL(isNatIListKind(x1)) = 0   
POL(isNatIListKindInact(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(isNatKindInact(x1)) = 0   
POL(isNatList(x1)) = 1 + x1   
POL(length(x1)) = 0   
POL(lengthInact(x1)) = 0   
POL(nil) = 0   
POL(nilInact) = 1   
POL(s(x1)) = 0   
POL(sInact(x1)) = 0   
POL(tt) = 1   
POL(zeros) = 0   
POL(zerosInact) = 0   

The following usable rules [17] were oriented: none



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
                                        ↳ QDPOrderProof
QDP
                                      ↳ QDP
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → A(X)
ISNATILISTKIND(consInact(V1, V2)) → AND(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
A(isNatIListKindInact(x1)) → ISNATILISTKIND(x1)

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ QDPOrderProof
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ AND
                                      ↳ QDP
QDP
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(sInact(V1)) → ISNATKIND(a(V1))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                        ↳ QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V1) → ISNAT(a(V1))
ISNAT(sInact(V1)) → U211(isNatKind(a(V1)), a(V1))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
QDP
                        ↳ QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

U511(tt, V1, V2) → U521(isNat(a(V1)), a(V2))
U521(tt, V2) → ISNATLIST(a(V2))
ISNATLIST(consInact(V1, V2)) → U511(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
                        ↳ QDP
                        ↳ QDP
QDP
              ↳ QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → U611(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
U611(tt, L) → LENGTH(a(L))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
  ↳ Incomplete Giesl Middeldorp-Transformation

Q DP problem:
The TRS P consists of the following rules:

U421(tt, V2) → ISNATILIST(a(V2))
U411(tt, V1, V2) → U421(isNat(a(V1)), a(V2))
ISNATILIST(consInact(V1, V2)) → U411(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))

The TRS R consists of the following rules:

zeroscons(0, zerosInact)
U11(tt, V1) → U12(isNatList(a(V1)))
U12(tt) → tt
U21(tt, V1) → U22(isNat(a(V1)))
U22(tt) → tt
U31(tt, V) → U32(isNatList(a(V)))
U32(tt) → tt
U41(tt, V1, V2) → U42(isNat(a(V1)), a(V2))
U42(tt, V2) → U43(isNatIList(a(V2)))
U43(tt) → tt
U51(tt, V1, V2) → U52(isNat(a(V1)), a(V2))
U52(tt, V2) → U53(isNatList(a(V2)))
U53(tt) → tt
U61(tt, L) → s(length(a(L)))
and(tt, X) → a(X)
isNat(0Inact) → tt
isNat(lengthInact(V1)) → U11(isNatIListKind(a(V1)), a(V1))
isNat(sInact(V1)) → U21(isNatKind(a(V1)), a(V1))
isNatIList(V) → U31(isNatIListKind(a(V)), a(V))
isNatIList(zerosInact) → tt
isNatIList(consInact(V1, V2)) → U41(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
isNatIListKind(nilInact) → tt
isNatIListKind(zerosInact) → tt
isNatIListKind(consInact(V1, V2)) → and(isNatKind(a(V1)), isNatIListKindInact(a(V2)))
isNatKind(0Inact) → tt
isNatKind(lengthInact(V1)) → isNatIListKind(a(V1))
isNatKind(sInact(V1)) → isNatKind(a(V1))
isNatList(nilInact) → tt
isNatList(consInact(V1, V2)) → U51(and(isNatKind(a(V1)), isNatIListKindInact(a(V2))), a(V1), a(V2))
length(nil) → 0
length(cons(N, L)) → U61(and(and(isNatList(a(L)), isNatIListKindInact(a(L))), andInact(isNat(N), isNatKindInact(N))), a(L))
a(x) → x
isNatKind(x1) → isNatKindInact(x1)
a(isNatKindInact(x1)) → isNatKind(x1)
and(x1, x2) → andInact(x1, x2)
a(andInact(x1, x2)) → and(x1, x2)
00Inact
a(0Inact) → 0
isNatIListKind(x1) → isNatIListKindInact(x1)
a(isNatIListKindInact(x1)) → isNatIListKind(x1)
cons(x1, x2) → consInact(x1, x2)
a(consInact(x1, x2)) → cons(x1, x2)
zeroszerosInact
a(zerosInact) → zeros
s(x1) → sInact(x1)
a(sInact(x1)) → s(x1)
length(x1) → lengthInact(x1)
a(lengthInact(x1)) → length(x1)
nilnilInact
a(nilInact) → nil

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We applied the Incomplete Giesl Middeldorp transformation [11] to transform the context-sensitive TRS to a usual TRS.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(U11(x1, x2)) → MARK(x1)
U11ACTIVE(tt, V1) → U12ACTIVE(isNatListActive(V1))
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
MARK(U42(x1, x2)) → U42ACTIVE(mark(x1), x2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(U12(x1)) → U12ACTIVE(mark(x1))
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(length(x1)) → MARK(x1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U32(x1)) → U32ACTIVE(mark(x1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(U53(x1)) → U53ACTIVE(mark(x1))
MARK(U53(x1)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATILISTKINDACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → U41ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U41(x1, x2, x3)) → MARK(x1)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(U43(x1)) → U43ACTIVE(mark(x1))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U32(x1)) → MARK(x1)
MARK(U22(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
U21ACTIVE(tt, V1) → U22ACTIVE(isNatActive(V1))
U61ACTIVE(tt, L) → MARK(L)
MARK(U21(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(U42(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → U42ACTIVE(isNatActive(V1), V2)
MARK(U52(x1, x2)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U31(x1, x2)) → MARK(x1)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(zeros) → ZEROSACTIVE
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U41(x1, x2, x3)) → U41ACTIVE(mark(x1), x2, x3)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATILISTACTIVE(V) → U31ACTIVE(isNatIListKindActive(V), V)
U42ACTIVE(tt, V2) → U43ACTIVE(isNatIListActive(V2))
MARK(U22(x1)) → U22ACTIVE(mark(x1))
MARK(U61(x1, x2)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
U31ACTIVE(tt, V) → ISNATLISTACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
U31ACTIVE(tt, V) → U32ACTIVE(isNatListActive(V))
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
U52ACTIVE(tt, V2) → U53ACTIVE(isNatListActive(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U31(x1, x2)) → U31ACTIVE(mark(x1), x2)
U42ACTIVE(tt, V2) → ISNATILISTACTIVE(V2)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(x1, x2)) → MARK(x1)
U11ACTIVE(tt, V1) → U12ACTIVE(isNatListActive(V1))
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
MARK(U42(x1, x2)) → U42ACTIVE(mark(x1), x2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(U12(x1)) → U12ACTIVE(mark(x1))
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(length(x1)) → MARK(x1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U32(x1)) → U32ACTIVE(mark(x1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(U53(x1)) → U53ACTIVE(mark(x1))
MARK(U53(x1)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATILISTKINDACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → U41ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U41(x1, x2, x3)) → MARK(x1)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(U43(x1)) → U43ACTIVE(mark(x1))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U32(x1)) → MARK(x1)
MARK(U22(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
U21ACTIVE(tt, V1) → U22ACTIVE(isNatActive(V1))
U61ACTIVE(tt, L) → MARK(L)
MARK(U21(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(U42(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → U42ACTIVE(isNatActive(V1), V2)
MARK(U52(x1, x2)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U31(x1, x2)) → MARK(x1)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(zeros) → ZEROSACTIVE
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U41(x1, x2, x3)) → U41ACTIVE(mark(x1), x2, x3)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATILISTACTIVE(V) → U31ACTIVE(isNatIListKindActive(V), V)
U42ACTIVE(tt, V2) → U43ACTIVE(isNatIListActive(V2))
MARK(U22(x1)) → U22ACTIVE(mark(x1))
MARK(U61(x1, x2)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
U31ACTIVE(tt, V) → ISNATLISTACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
U31ACTIVE(tt, V) → U32ACTIVE(isNatListActive(V))
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
U52ACTIVE(tt, V2) → U53ACTIVE(isNatListActive(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U31(x1, x2)) → U31ACTIVE(mark(x1), x2)
U42ACTIVE(tt, V2) → ISNATILISTACTIVE(V2)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 11 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(x1, x2)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
MARK(U42(x1, x2)) → U42ACTIVE(mark(x1), x2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(length(x1)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(U53(x1)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATILISTKINDACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → U41ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U41(x1, x2, x3)) → MARK(x1)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(U32(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U22(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
MARK(U21(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
U61ACTIVE(tt, L) → MARK(L)
MARK(U42(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → U42ACTIVE(isNatActive(V1), V2)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(U12(x1)) → MARK(x1)
MARK(U52(x1, x2)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U31(x1, x2)) → MARK(x1)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
MARK(U41(x1, x2, x3)) → U41ACTIVE(mark(x1), x2, x3)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATILISTACTIVE(V) → U31ACTIVE(isNatIListKindActive(V), V)
MARK(U61(x1, x2)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
U31ACTIVE(tt, V) → ISNATLISTACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U31(x1, x2)) → U31ACTIVE(mark(x1), x2)
U42ACTIVE(tt, V2) → ISNATILISTACTIVE(V2)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U42(x1, x2)) → U42ACTIVE(mark(x1), x2)
MARK(U41(x1, x2, x3)) → MARK(x1)
MARK(U32(x1)) → MARK(x1)
MARK(U42(x1, x2)) → MARK(x1)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(U31(x1, x2)) → MARK(x1)
MARK(U41(x1, x2, x3)) → U41ACTIVE(mark(x1), x2, x3)
MARK(U31(x1, x2)) → U31ACTIVE(mark(x1), x2)
The remaining pairs can at least be oriented weakly.

MARK(U11(x1, x2)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(length(x1)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(U53(x1)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATILISTKINDACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → U41ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U22(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
MARK(U21(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
U61ACTIVE(tt, L) → MARK(L)
U41ACTIVE(tt, V1, V2) → U42ACTIVE(isNatActive(V1), V2)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(U12(x1)) → MARK(x1)
MARK(U52(x1, x2)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(s(x1)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATILISTACTIVE(V) → U31ACTIVE(isNatIListKindActive(V), V)
MARK(U61(x1, x2)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
U31ACTIVE(tt, V) → ISNATLISTACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
U42ACTIVE(tt, V2) → ISNATILISTACTIVE(V2)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ANDACTIVE(x1, x2)) = x2   
POL(ISNATACTIVE(x1)) = 0   
POL(ISNATILISTACTIVE(x1)) = 0   
POL(ISNATILISTKINDACTIVE(x1)) = 0   
POL(ISNATKINDACTIVE(x1)) = 0   
POL(ISNATLISTACTIVE(x1)) = 0   
POL(LENGTHACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = x1   
POL(U11ACTIVE(x1, x2)) = 0   
POL(U11Active(x1, x2)) = x1   
POL(U12(x1)) = x1   
POL(U12Active(x1)) = x1   
POL(U21(x1, x2)) = x1   
POL(U21ACTIVE(x1, x2)) = 0   
POL(U21Active(x1, x2)) = x1   
POL(U22(x1)) = x1   
POL(U22Active(x1)) = x1   
POL(U31(x1, x2)) = 1 + x1 + x2   
POL(U31ACTIVE(x1, x2)) = 0   
POL(U31Active(x1, x2)) = 1 + x1 + x2   
POL(U32(x1)) = 1 + x1   
POL(U32Active(x1)) = 1 + x1   
POL(U41(x1, x2, x3)) = 1 + x1 + x3   
POL(U41ACTIVE(x1, x2, x3)) = 0   
POL(U41Active(x1, x2, x3)) = 1 + x1 + x3   
POL(U42(x1, x2)) = 1 + x1 + x2   
POL(U42ACTIVE(x1, x2)) = 0   
POL(U42Active(x1, x2)) = 1 + x1 + x2   
POL(U43(x1)) = x1   
POL(U43Active(x1)) = x1   
POL(U51(x1, x2, x3)) = x1   
POL(U51ACTIVE(x1, x2, x3)) = 0   
POL(U51Active(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1   
POL(U52ACTIVE(x1, x2)) = 0   
POL(U52Active(x1, x2)) = x1   
POL(U53(x1)) = x1   
POL(U53Active(x1)) = x1   
POL(U61(x1, x2)) = x1 + x2   
POL(U61ACTIVE(x1, x2)) = x2   
POL(U61Active(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatActive(x1)) = 0   
POL(isNatIList(x1)) = 1 + x1   
POL(isNatIListActive(x1)) = 1 + x1   
POL(isNatIListKind(x1)) = 0   
POL(isNatIListKindActive(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(isNatKindActive(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(isNatListActive(x1)) = 0   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented:

mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U12Active(x1) → U12(x1)
mark(U12(x1)) → U12Active(mark(x1))
U11Active(x1, x2) → U11(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
zerosActivezeros
mark(zeros) → zerosActive
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
andActive(x1, x2) → and(x1, x2)
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
mark(isNatKind(x1)) → isNatKindActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(tt, X) → mark(X)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatActive(x1) → isNat(x1)
mark(isNat(x1)) → isNatActive(x1)
U53Active(x1) → U53(x1)
mark(U53(x1)) → U53Active(mark(x1))
U61Active(x1, x2) → U61(x1, x2)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
isNatKindActive(x1) → isNatKind(x1)
isNatListActive(x1) → isNatList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatKindActive(0) → tt
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U61Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
lengthActive(nil) → 0
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatListActive(nil) → tt



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(x1, x2)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
MARK(length(x1)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(U53(x1)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATILISTKINDACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → U41ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U22(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U21(x1, x2)) → MARK(x1)
U41ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
U61ACTIVE(tt, L) → MARK(L)
U41ACTIVE(tt, V1, V2) → U42ACTIVE(isNatActive(V1), V2)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(U12(x1)) → MARK(x1)
MARK(U52(x1, x2)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(s(x1)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATILISTACTIVE(V) → U31ACTIVE(isNatIListKindActive(V), V)
MARK(U61(x1, x2)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
U31ACTIVE(tt, V) → ISNATLISTACTIVE(V)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
U42ACTIVE(tt, V2) → ISNATILISTACTIVE(V2)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 6 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ QDPOrderProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(U52(x1, x2)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(length(x1)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
MARK(U53(x1)) → MARK(x1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U61(x1, x2)) → MARK(x1)
MARK(U22(x1)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
U61ACTIVE(tt, L) → MARK(L)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U21(x1, x2)) → MARK(x1)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(length(x1)) → MARK(x1)
MARK(U61(x1, x2)) → U61ACTIVE(mark(x1), x2)
MARK(U61(x1, x2)) → MARK(x1)
The remaining pairs can at least be oriented weakly.

MARK(U52(x1, x2)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U53(x1)) → MARK(x1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U22(x1)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
U61ACTIVE(tt, L) → MARK(L)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U21(x1, x2)) → MARK(x1)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ANDACTIVE(x1, x2)) = x2   
POL(ISNATACTIVE(x1)) = 0   
POL(ISNATILISTKINDACTIVE(x1)) = 0   
POL(ISNATKINDACTIVE(x1)) = 0   
POL(ISNATLISTACTIVE(x1)) = 0   
POL(LENGTHACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = x1   
POL(U11ACTIVE(x1, x2)) = 0   
POL(U11Active(x1, x2)) = x1   
POL(U12(x1)) = x1   
POL(U12Active(x1)) = x1   
POL(U21(x1, x2)) = x1   
POL(U21ACTIVE(x1, x2)) = 0   
POL(U21Active(x1, x2)) = x1   
POL(U22(x1)) = x1   
POL(U22Active(x1)) = x1   
POL(U31(x1, x2)) = x2   
POL(U31Active(x1, x2)) = x2   
POL(U32(x1)) = 0   
POL(U32Active(x1)) = 0   
POL(U41(x1, x2, x3)) = x3   
POL(U41Active(x1, x2, x3)) = x3   
POL(U42(x1, x2)) = x1 + x2   
POL(U42Active(x1, x2)) = x1 + x2   
POL(U43(x1)) = x1   
POL(U43Active(x1)) = x1   
POL(U51(x1, x2, x3)) = x1   
POL(U51ACTIVE(x1, x2, x3)) = 0   
POL(U51Active(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1   
POL(U52ACTIVE(x1, x2)) = 0   
POL(U52Active(x1, x2)) = x1   
POL(U53(x1)) = x1   
POL(U53Active(x1)) = x1   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U61ACTIVE(x1, x2)) = x2   
POL(U61Active(x1, x2)) = 1 + x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(andActive(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatActive(x1)) = 0   
POL(isNatIList(x1)) = x1   
POL(isNatIListActive(x1)) = x1   
POL(isNatIListKind(x1)) = 0   
POL(isNatIListKindActive(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(isNatKindActive(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(isNatListActive(x1)) = 0   
POL(length(x1)) = 1 + x1   
POL(lengthActive(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented:

mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U12Active(x1) → U12(x1)
mark(U12(x1)) → U12Active(mark(x1))
U11Active(x1, x2) → U11(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
zerosActivezeros
mark(zeros) → zerosActive
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
andActive(x1, x2) → and(x1, x2)
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
mark(isNatKind(x1)) → isNatKindActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(tt, X) → mark(X)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatActive(x1) → isNat(x1)
mark(isNat(x1)) → isNatActive(x1)
U53Active(x1) → U53(x1)
mark(U53(x1)) → U53Active(mark(x1))
U61Active(x1, x2) → U61(x1, x2)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
isNatKindActive(x1) → isNatKind(x1)
isNatListActive(x1) → isNatList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatKindActive(0) → tt
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U61Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
lengthActive(nil) → 0
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatListActive(nil) → tt



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(x1)) → MARK(x1)
MARK(U52(x1, x2)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNatIListKind(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U53(x1)) → MARK(x1)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
MARK(U43(x1)) → MARK(x1)
MARK(U22(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N)))
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(U21(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
U61ACTIVE(tt, L) → MARK(L)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 4 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
QDP
                                  ↳ QDPOrderProof
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U52(x1, x2)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U53(x1)) → MARK(x1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U22(x1)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U21(x1, x2)) → MARK(x1)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U52(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
MARK(isNatKind(x1)) → ISNATKINDACTIVE(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(U52(x1, x2)) → U52ACTIVE(mark(x1), x2)
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(U51(x1, x2, x3)) → MARK(x1)
MARK(U51(x1, x2, x3)) → U51ACTIVE(mark(x1), x2, x3)
The remaining pairs can at least be oriented weakly.

MARK(U12(x1)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U53(x1)) → MARK(x1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U22(x1)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U21(x1, x2)) → MARK(x1)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ANDACTIVE(x1, x2)) = x2   
POL(ISNATACTIVE(x1)) = 0   
POL(ISNATILISTKINDACTIVE(x1)) = 0   
POL(ISNATKINDACTIVE(x1)) = 0   
POL(ISNATLISTACTIVE(x1)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = x1   
POL(U11ACTIVE(x1, x2)) = 0   
POL(U11Active(x1, x2)) = 0   
POL(U12(x1)) = x1   
POL(U12Active(x1)) = 0   
POL(U21(x1, x2)) = x1   
POL(U21ACTIVE(x1, x2)) = 0   
POL(U21Active(x1, x2)) = 0   
POL(U22(x1)) = x1   
POL(U22Active(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U31Active(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U32Active(x1)) = 0   
POL(U41(x1, x2, x3)) = 0   
POL(U41Active(x1, x2, x3)) = 0   
POL(U42(x1, x2)) = 0   
POL(U42Active(x1, x2)) = 0   
POL(U43(x1)) = x1   
POL(U43Active(x1)) = 0   
POL(U51(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U51ACTIVE(x1, x2, x3)) = 0   
POL(U51Active(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 1 + x1   
POL(U52ACTIVE(x1, x2)) = 0   
POL(U52Active(x1, x2)) = 0   
POL(U53(x1)) = x1   
POL(U53Active(x1)) = 0   
POL(U61(x1, x2)) = 0   
POL(U61Active(x1, x2)) = 0   
POL(and(x1, x2)) = 1 + x1 + x2 + max(x1, x2)   
POL(andActive(x1, x2)) = 0   
POL(cons(x1, x2)) = x1   
POL(isNat(x1)) = 0   
POL(isNatActive(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatIListActive(x1)) = 0   
POL(isNatIListKind(x1)) = 0   
POL(isNatIListKindActive(x1)) = 0   
POL(isNatKind(x1)) = 1   
POL(isNatKindActive(x1)) = 0   
POL(isNatList(x1)) = 1   
POL(isNatListActive(x1)) = 0   
POL(length(x1)) = 0   
POL(lengthActive(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented: none



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
QDP
                                      ↳ Instantiation
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(x1)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ANDACTIVE(tt, X) → MARK(X)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U53(x1)) → MARK(x1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U22(x1)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U21(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule ANDACTIVE(tt, X) → MARK(X) we obtained the following new rules:

ANDACTIVE(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ Instantiation
QDP
                                          ↳ DependencyGraphProof
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(x1)) → MARK(x1)
ISNATACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U11(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
MARK(cons(x1, x2)) → MARK(x1)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ANDACTIVE(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATLISTACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(U53(x1)) → MARK(x1)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
MARK(U21(x1, x2)) → U21ACTIVE(mark(x1), x2)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(U43(x1)) → MARK(x1)
MARK(U22(x1)) → MARK(x1)
U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
MARK(U21(x1, x2)) → MARK(x1)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 7 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ AND
QDP
                                                ↳ QDPOrderProof
                                              ↳ QDP
                                              ↳ QDP
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ANDACTIVE(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNATILISTKINDACTIVE(cons(V1, V2)) → ISNATKINDACTIVE(V1)
ISNATKINDACTIVE(s(V1)) → ISNATKINDACTIVE(V1)
MARK(isNatIListKind(x1)) → ISNATILISTKINDACTIVE(x1)
The remaining pairs can at least be oriented weakly.

ANDACTIVE(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))
ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(ANDACTIVE(x1, x2)) = 1 + x2   
POL(ISNATILISTKINDACTIVE(x1)) = 1 + x1   
POL(ISNATKINDACTIVE(x1)) = 1 + x1   
POL(MARK(x1)) = 1 + x1   
POL(U11(x1, x2)) = 0   
POL(U11Active(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U12Active(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U21Active(x1, x2)) = 0   
POL(U22(x1)) = 0   
POL(U22Active(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U31Active(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U32Active(x1)) = 0   
POL(U41(x1, x2, x3)) = 0   
POL(U41Active(x1, x2, x3)) = 0   
POL(U42(x1, x2)) = 0   
POL(U42Active(x1, x2)) = 0   
POL(U43(x1)) = 0   
POL(U43Active(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U51Active(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 0   
POL(U52Active(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U53Active(x1)) = 0   
POL(U61(x1, x2)) = 0   
POL(U61Active(x1, x2)) = 0   
POL(and(x1, x2)) = 0   
POL(andActive(x1, x2)) = 0   
POL(cons(x1, x2)) = 1 + x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatActive(x1)) = 0   
POL(isNatIList(x1)) = 0   
POL(isNatIListActive(x1)) = 0   
POL(isNatIListKind(x1)) = 1 + x1   
POL(isNatIListKindActive(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(isNatKindActive(x1)) = 0   
POL(isNatList(x1)) = 0   
POL(isNatListActive(x1)) = 0   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented: none



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ AND
                                              ↳ QDP
                                                ↳ QDPOrderProof
QDP
                                                    ↳ DependencyGraphProof
                                              ↳ QDP
                                              ↳ QDP
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNATILISTKINDACTIVE(cons(V1, V2)) → ANDACTIVE(isNatKindActive(V1), isNatIListKind(V2))
ANDACTIVE(tt, isNatIListKind(y_2)) → MARK(isNatIListKind(y_2))
ISNATKINDACTIVE(length(V1)) → ISNATILISTKINDACTIVE(V1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ AND
                                              ↳ QDP
QDP
                                                ↳ QDPSizeChangeProof
                                              ↳ QDP
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U21ACTIVE(tt, V1) → ISNATACTIVE(V1)
ISNATACTIVE(length(V1)) → U11ACTIVE(isNatIListKindActive(V1), V1)
ISNATACTIVE(s(V1)) → U21ACTIVE(isNatKindActive(V1), V1)
ISNATLISTACTIVE(cons(V1, V2)) → U51ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U51ACTIVE(tt, V1, V2) → U52ACTIVE(isNatActive(V1), V2)
U11ACTIVE(tt, V1) → ISNATLISTACTIVE(V1)
U51ACTIVE(tt, V1, V2) → ISNATACTIVE(V1)
U52ACTIVE(tt, V2) → ISNATLISTACTIVE(V2)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ AND
                                              ↳ QDP
                                              ↳ QDP
QDP
                                                ↳ UsableRulesProof
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U43(x1)) → MARK(x1)
MARK(U22(x1)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(U21(x1, x2)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(U53(x1)) → MARK(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ DependencyGraphProof
                                            ↳ AND
                                              ↳ QDP
                                              ↳ QDP
                                              ↳ QDP
                                                ↳ UsableRulesProof
QDP
                                                    ↳ QDPSizeChangeProof
                                ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(x1)) → MARK(x1)
MARK(U43(x1)) → MARK(x1)
MARK(U12(x1)) → MARK(x1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(U21(x1, x2)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(U53(x1)) → MARK(x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ QDPOrderProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


U61ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
The remaining pairs can at least be oriented weakly.

LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( U52(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\10/
·x2

M( U42Active(x1, x2) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( U41(x1, ..., x3) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2+
/00\
\00/
·x3

M( isNatActive(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( U11Active(x1, x2) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( zerosActive ) =
/0\
\0/

M( U52Active(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\10/
·x2

M( mark(x1) ) =
/0\
\1/
+
/01\
\01/
·x1

M( U41Active(x1, ..., x3) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2+
/00\
\00/
·x3

M( U22Active(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( U61Active(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\01/
·x2

M( and(x1, x2) ) =
/0\
\0/
+
/00\
\01/
·x1+
/00\
\01/
·x2

M( isNatKindActive(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( isNatIListKind(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( U21(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( tt ) =
/0\
\1/

M( isNatIListActive(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( isNatList(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

M( lengthActive(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( zeros ) =
/0\
\0/

M( U12Active(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( isNatIList(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( U12(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( U53Active(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( s(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( isNat(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( U51(x1, ..., x3) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2+
/00\
\10/
·x3

M( nil ) =
/1\
\1/

M( U21Active(x1, x2) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( U31(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( U42(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( U32Active(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

M( U11(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( isNatKind(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( U43(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( 0 ) =
/0\
\0/

M( U31Active(x1, x2) ) =
/0\
\1/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( cons(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/11\
\11/
·x2

M( U22(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( U53(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( U61(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\01/
·x2

M( andActive(x1, x2) ) =
/0\
\0/
+
/00\
\01/
·x1+
/01\
\01/
·x2

M( U43Active(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( U32(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( isNatListActive(x1) ) =
/0\
\0/
+
/00\
\10/
·x1

M( length(x1) ) =
/0\
\0/
+
/00\
\01/
·x1

M( U51Active(x1, ..., x3) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2+
/00\
\10/
·x3

M( isNatIListKindActive(x1) ) =
/0\
\1/
+
/00\
\00/
·x1

Tuple symbols:
M( U61ACTIVE(x1, x2) ) = 0+
[0,1]
·x1+
[0,1]
·x2

M( LENGTHACTIVE(x1) ) = 0+
[1,0]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U12Active(x1) → U12(x1)
mark(U12(x1)) → U12Active(mark(x1))
U11Active(x1, x2) → U11(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
zerosActivezeros
mark(zeros) → zerosActive
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
andActive(x1, x2) → and(x1, x2)
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
mark(isNatKind(x1)) → isNatKindActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(tt, X) → mark(X)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatActive(x1) → isNat(x1)
mark(isNat(x1)) → isNatActive(x1)
U53Active(x1) → U53(x1)
mark(U53(x1)) → U53Active(mark(x1))
U61Active(x1, x2) → U61(x1, x2)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
isNatKindActive(x1) → isNatKind(x1)
isNatListActive(x1) → isNatList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatKindActive(0) → tt
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U61Active(tt, L) → s(lengthActive(mark(L)))
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)
lengthActive(nil) → 0
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatListActive(nil) → tt



↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ QDPOrderProof
QDP
                                      ↳ DependencyGraphProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → U61ACTIVE(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ CSR
  ↳ CSDependencyPairsProof
  ↳ Zantema-Transformation
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

ISNATILISTACTIVE(cons(V1, V2)) → U41ACTIVE(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
U42ACTIVE(tt, V2) → ISNATILISTACTIVE(V2)
U41ACTIVE(tt, V1, V2) → U42ACTIVE(isNatActive(V1), V2)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U12(x1)) → U12Active(mark(x1))
U12Active(x1) → U12(x1)
mark(U21(x1, x2)) → U21Active(mark(x1), x2)
U21Active(x1, x2) → U21(x1, x2)
mark(U22(x1)) → U22Active(mark(x1))
U22Active(x1) → U22(x1)
mark(U31(x1, x2)) → U31Active(mark(x1), x2)
U31Active(x1, x2) → U31(x1, x2)
mark(U32(x1)) → U32Active(mark(x1))
U32Active(x1) → U32(x1)
mark(U41(x1, x2, x3)) → U41Active(mark(x1), x2, x3)
U41Active(x1, x2, x3) → U41(x1, x2, x3)
mark(U42(x1, x2)) → U42Active(mark(x1), x2)
U42Active(x1, x2) → U42(x1, x2)
mark(U43(x1)) → U43Active(mark(x1))
U43Active(x1) → U43(x1)
mark(U51(x1, x2, x3)) → U51Active(mark(x1), x2, x3)
U51Active(x1, x2, x3) → U51(x1, x2, x3)
mark(U52(x1, x2)) → U52Active(mark(x1), x2)
U52Active(x1, x2) → U52(x1, x2)
mark(U53(x1)) → U53Active(mark(x1))
U53Active(x1) → U53(x1)
mark(U61(x1, x2)) → U61Active(mark(x1), x2)
U61Active(x1, x2) → U61(x1, x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatIListKind(x1)) → isNatIListKindActive(x1)
isNatIListKindActive(x1) → isNatIListKind(x1)
mark(isNatKind(x1)) → isNatKindActive(x1)
isNatKindActive(x1) → isNatKind(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActivecons(0, zeros)
U11Active(tt, V1) → U12Active(isNatListActive(V1))
U12Active(tt) → tt
U21Active(tt, V1) → U22Active(isNatActive(V1))
U22Active(tt) → tt
U31Active(tt, V) → U32Active(isNatListActive(V))
U32Active(tt) → tt
U41Active(tt, V1, V2) → U42Active(isNatActive(V1), V2)
U42Active(tt, V2) → U43Active(isNatIListActive(V2))
U43Active(tt) → tt
U51Active(tt, V1, V2) → U52Active(isNatActive(V1), V2)
U52Active(tt, V2) → U53Active(isNatListActive(V2))
U53Active(tt) → tt
U61Active(tt, L) → s(lengthActive(mark(L)))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → U11Active(isNatIListKindActive(V1), V1)
isNatActive(s(V1)) → U21Active(isNatKindActive(V1), V1)
isNatIListActive(V) → U31Active(isNatIListKindActive(V), V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → U41Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
isNatIListKindActive(nil) → tt
isNatIListKindActive(zeros) → tt
isNatIListKindActive(cons(V1, V2)) → andActive(isNatKindActive(V1), isNatIListKind(V2))
isNatKindActive(0) → tt
isNatKindActive(length(V1)) → isNatIListKindActive(V1)
isNatKindActive(s(V1)) → isNatKindActive(V1)
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → U51Active(andActive(isNatKindActive(V1), isNatIListKind(V2)), V1, V2)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U61Active(andActive(andActive(isNatListActive(L), isNatIListKind(L)), and(isNat(N), isNatKind(N))), L)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: