zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros: empty set
cons: {1}
0: empty set
and: {1}
tt: empty set
length: {1}
nil: empty set
s: {1}
take: {1, 2}
↳ CSR
↳ CSRInnermostProof
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros: empty set
cons: {1}
0: empty set
and: {1}
tt: empty set
length: {1}
nil: empty set
s: {1}
take: {1, 2}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros: empty set
cons: {1}
0: empty set
and: {1}
tt: empty set
length: {1}
nil: empty set
s: {1}
take: {1, 2}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
AND(tt, X) → X
LENGTH(cons(N, L)) → L
zeros
take(M, IL)
take on positions {1, 2}
AND(tt, X) → U(X)
LENGTH(cons(N, L)) → U(L)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(zeros) → ZEROS
U(take(M, IL)) → TAKE(M, IL)
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ QDP
↳ RuleRemovalProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
and(tt, X) → X
POL(0) = 0
POL(LENGTH(x1)) = 2·x1
POL(and(x1, x2)) = 2 + x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(tt) = 1
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
take(0, IL) → nil
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + 2·x2
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
length(nil) → 0
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(length(x1)) = x1
POL(nil) = 1
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = 2·x1 + 2·x2
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ NonTerminationProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zerosInact)
and(tt, X) → a(X)
length(nil) → 0
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(x1, x2)
zeros → cons(0, zerosInact)
and(tt, X) → a(X)
length(nil) → 0
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(x1, x2)
Used ordering:
and(tt, X) → a(X)
length(nil) → 0
a(x) → x
zeros → zerosInact
take(x1, x2) → takeInact(x1, x2)
POL(0) = 0
POL(a(x1)) = 1 + x1
POL(and(x1, x2)) = 2 + 2·x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(length(x1)) = 2 + 2·x1
POL(nil) = 1
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + 2·x1 + x2
POL(takeInact(x1, x2)) = 2·x1 + x2
POL(tt) = 1
POL(zeros) = 1
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
Used ordering:
take(0, IL) → nil
POL(0) = 0
POL(a(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(nil) = 1
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + 2·x1 + x2
POL(takeInact(x1, x2)) = 2 + 2·x1 + x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
A(zerosInact) → ZEROS
LENGTH(cons(N, L)) → A(L)
A(takeInact(x1, x2)) → TAKE(x1, x2)
TAKE(s(M), cons(N, IL)) → A(IL)
LENGTH(cons(N, L)) → LENGTH(a(L))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
A(zerosInact) → ZEROS
LENGTH(cons(N, L)) → A(L)
A(takeInact(x1, x2)) → TAKE(x1, x2)
TAKE(s(M), cons(N, IL)) → A(IL)
LENGTH(cons(N, L)) → LENGTH(a(L))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
TAKE(s(M), cons(N, IL)) → A(IL)
A(takeInact(x1, x2)) → TAKE(x1, x2)
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
TAKE(s(M), cons(N, IL)) → A(IL)
A(takeInact(x1, x2)) → TAKE(x1, x2)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
A(takeInact(x1, x2)) → TAKE(x1, x2)
TAKE(s(M), cons(N, IL)) → A(IL)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(a(L))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
zeros → cons(0, zerosInact)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
length(cons(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(x1, x2)
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
zeros → cons(0, zerosInact)
zeros
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
Used ordering: POLO with Polynomial interpretation [25]:
a(takeInact(x1, x2)) → take(x1, x2)
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(a(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(s(x1)) = 2 + 2·x1
POL(take(x1, x2)) = 2·x1 + x2
POL(takeInact(x1, x2)) = 1 + 2·x1 + x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
zeros → cons(0, zerosInact)
zeros
take(s(x0), cons(x1, x2))
a(zerosInact)
a(takeInact(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
zeros → cons(0, zerosInact)
zeros
a(zerosInact)
a(takeInact(x0, x1))
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
a(zerosInact) → zeros
zeros → cons(0, zerosInact)
zeros
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
zeros → cons(0, zerosInact)
zeros
a(zerosInact)
a(takeInact(x0, x1))
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
zeros → cons(0, zerosInact)
zeros
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
zeros → cons(0, zerosInact)
zeros
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
zeros
zeros
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
LENGTH(cons(0, zerosInact)) → LENGTH(cons(0, zerosInact))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(0, zerosInact)) → LENGTH(cons(0, zerosInact))
LENGTH(cons(0, zerosInact)) → LENGTH(cons(0, zerosInact))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
active(zeros) → mark(cons(0, zeros))
active(and(tt, X)) → mark(X)
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
Used ordering:
active(and(tt, X)) → mark(X)
POL(0) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = 2 + x1 + x2
POL(cons(x1, x2)) = x1 + 2·x2
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = 2·x1 + 2·x2
POL(tt) = 1
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
active(zeros) → mark(cons(0, zeros))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
active(zeros) → mark(cons(0, zeros))
active(length(nil)) → mark(0)
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
Used ordering:
active(length(nil)) → mark(0)
POL(0) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 2
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(tt) = 0
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(0, IL)) → mark(nil)
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
Used ordering:
active(take(0, IL)) → mark(nil)
POL(0) = 0
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + 2·x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2
POL(tt) = 0
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
MARK(take(x1, x2)) → MARK(x2)
ACTIVE(length(cons(N, L))) → S(length(L))
CONS(mark(x1), x2) → CONS(x1, x2)
MARK(tt) → ACTIVE(tt)
TAKE(x1, active(x2)) → TAKE(x1, x2)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → MARK(x1)
ACTIVE(length(cons(N, L))) → LENGTH(L)
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
MARK(length(x1)) → MARK(x1)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(and(x1, x2)) → MARK(x1)
ACTIVE(zeros) → CONS(0, zeros)
MARK(take(x1, x2)) → MARK(x1)
LENGTH(mark(x1)) → LENGTH(x1)
MARK(take(x1, x2)) → TAKE(mark(x1), mark(x2))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
LENGTH(active(x1)) → LENGTH(x1)
S(mark(x1)) → S(x1)
S(active(x1)) → S(x1)
MARK(s(x1)) → S(mark(x1))
MARK(cons(x1, x2)) → CONS(mark(x1), x2)
MARK(and(x1, x2)) → AND(mark(x1), x2)
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(take(s(M), cons(N, IL))) → CONS(N, take(M, IL))
TAKE(active(x1), x2) → TAKE(x1, x2)
ACTIVE(take(s(M), cons(N, IL))) → TAKE(M, IL)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
TAKE(x1, mark(x2)) → TAKE(x1, x2)
AND(mark(x1), x2) → AND(x1, x2)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(0) → ACTIVE(0)
MARK(length(x1)) → LENGTH(mark(x1))
TAKE(mark(x1), x2) → TAKE(x1, x2)
CONS(active(x1), x2) → CONS(x1, x2)
AND(active(x1), x2) → AND(x1, x2)
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
MARK(nil) → ACTIVE(nil)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(take(x1, x2)) → MARK(x2)
ACTIVE(length(cons(N, L))) → S(length(L))
CONS(mark(x1), x2) → CONS(x1, x2)
MARK(tt) → ACTIVE(tt)
TAKE(x1, active(x2)) → TAKE(x1, x2)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → MARK(x1)
ACTIVE(length(cons(N, L))) → LENGTH(L)
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
MARK(length(x1)) → MARK(x1)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(and(x1, x2)) → MARK(x1)
ACTIVE(zeros) → CONS(0, zeros)
MARK(take(x1, x2)) → MARK(x1)
LENGTH(mark(x1)) → LENGTH(x1)
MARK(take(x1, x2)) → TAKE(mark(x1), mark(x2))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
LENGTH(active(x1)) → LENGTH(x1)
S(mark(x1)) → S(x1)
S(active(x1)) → S(x1)
MARK(s(x1)) → S(mark(x1))
MARK(cons(x1, x2)) → CONS(mark(x1), x2)
MARK(and(x1, x2)) → AND(mark(x1), x2)
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(take(s(M), cons(N, IL))) → CONS(N, take(M, IL))
TAKE(active(x1), x2) → TAKE(x1, x2)
ACTIVE(take(s(M), cons(N, IL))) → TAKE(M, IL)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
TAKE(x1, mark(x2)) → TAKE(x1, x2)
AND(mark(x1), x2) → AND(x1, x2)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(0) → ACTIVE(0)
MARK(length(x1)) → LENGTH(mark(x1))
TAKE(mark(x1), x2) → TAKE(x1, x2)
CONS(active(x1), x2) → CONS(x1, x2)
AND(active(x1), x2) → AND(x1, x2)
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
MARK(nil) → ACTIVE(nil)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
TAKE(x1, active(x2)) → TAKE(x1, x2)
TAKE(active(x1), x2) → TAKE(x1, x2)
TAKE(mark(x1), x2) → TAKE(x1, x2)
TAKE(x1, mark(x2)) → TAKE(x1, x2)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
TAKE(x1, active(x2)) → TAKE(x1, x2)
TAKE(active(x1), x2) → TAKE(x1, x2)
TAKE(mark(x1), x2) → TAKE(x1, x2)
TAKE(x1, mark(x2)) → TAKE(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
cons(active(x0), x1)
cons(mark(x0), x1)
and(active(x0), x1)
and(mark(x0), x1)
length(active(x0))
length(mark(x0))
s(active(x0))
s(mark(x0))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
TAKE(x1, active(x2)) → TAKE(x1, x2)
TAKE(mark(x1), x2) → TAKE(x1, x2)
TAKE(active(x1), x2) → TAKE(x1, x2)
TAKE(x1, mark(x2)) → TAKE(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
mark(0)
mark(and(x0, x1))
mark(tt)
mark(length(x0))
mark(nil)
mark(s(x0))
mark(take(x0, x1))
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
S(active(x1)) → S(x1)
S(mark(x1)) → S(x1)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
S(active(x1)) → S(x1)
S(mark(x1)) → S(x1)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
cons(active(x0), x1)
cons(mark(x0), x1)
and(active(x0), x1)
and(mark(x0), x1)
length(active(x0))
length(mark(x0))
s(active(x0))
s(mark(x0))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
S(mark(x1)) → S(x1)
S(active(x1)) → S(x1)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
mark(0)
mark(and(x0, x1))
mark(tt)
mark(length(x0))
mark(nil)
mark(s(x0))
mark(take(x0, x1))
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(mark(x1)) → LENGTH(x1)
LENGTH(active(x1)) → LENGTH(x1)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(mark(x1)) → LENGTH(x1)
LENGTH(active(x1)) → LENGTH(x1)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
cons(active(x0), x1)
cons(mark(x0), x1)
and(active(x0), x1)
and(mark(x0), x1)
length(active(x0))
length(mark(x0))
s(active(x0))
s(mark(x0))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(mark(x1)) → LENGTH(x1)
LENGTH(active(x1)) → LENGTH(x1)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
mark(0)
mark(and(x0, x1))
mark(tt)
mark(length(x0))
mark(nil)
mark(s(x0))
mark(take(x0, x1))
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
AND(mark(x1), x2) → AND(x1, x2)
AND(active(x1), x2) → AND(x1, x2)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
AND(mark(x1), x2) → AND(x1, x2)
AND(active(x1), x2) → AND(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
cons(active(x0), x1)
cons(mark(x0), x1)
and(active(x0), x1)
and(mark(x0), x1)
length(active(x0))
length(mark(x0))
s(active(x0))
s(mark(x0))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
AND(mark(x1), x2) → AND(x1, x2)
AND(active(x1), x2) → AND(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
mark(0)
mark(and(x0, x1))
mark(tt)
mark(length(x0))
mark(nil)
mark(s(x0))
mark(take(x0, x1))
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
CONS(mark(x1), x2) → CONS(x1, x2)
CONS(active(x1), x2) → CONS(x1, x2)
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
CONS(mark(x1), x2) → CONS(x1, x2)
CONS(active(x1), x2) → CONS(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
cons(active(x0), x1)
cons(mark(x0), x1)
and(active(x0), x1)
and(mark(x0), x1)
length(active(x0))
length(mark(x0))
s(active(x0))
s(mark(x0))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
CONS(mark(x1), x2) → CONS(x1, x2)
CONS(active(x1), x2) → CONS(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
mark(0)
mark(and(x0, x1))
mark(tt)
mark(length(x0))
mark(nil)
mark(s(x0))
mark(take(x0, x1))
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(take(x1, x2)) → MARK(x2)
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
MARK(length(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(and(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → MARK(x1)
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
MARK(and(x1, x2)) → MARK(x1)
POL(0) = 0
POL(ACTIVE(x1)) = 2·x1
POL(MARK(x1)) = 2·x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 1 + 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 2·x1 + 2·x2
POL(tt) = 0
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(take(x1, x2)) → MARK(x2)
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
MARK(length(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(take(x1, x2)) → MARK(x1)
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
MARK(take(x1, x2)) → MARK(x2)
MARK(take(x1, x2)) → MARK(x1)
POL(0) = 0
POL(ACTIVE(x1)) = 2·x1
POL(MARK(x1)) = 2·x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(length(x1)) → MARK(x1)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
MARK(length(x1)) → MARK(x1)
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 1 + 2·x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(tt) = 2
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(take(s(M), cons(N, IL))) → MARK(cons(N, take(M, IL)))
Used ordering: Polynomial interpretation [25]:
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x2
POL(tt) = 0
POL(zeros) = 0
cons(mark(x1), x2) → cons(x1, x2)
cons(active(x1), x2) → cons(x1, x2)
active(zeros) → mark(cons(0, zeros))
mark(length(x1)) → active(length(mark(x1)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
mark(and(x1, x2)) → active(and(mark(x1), x2))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(s(x1)) → active(s(mark(x1)))
active(length(cons(N, L))) → mark(s(length(L)))
mark(tt) → active(tt)
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(0) → active(0)
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(active(x1), x2) → take(x1, x2)
mark(nil) → active(nil)
s(mark(x1)) → s(x1)
s(active(x1)) → s(x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(x1, x2)) → ACTIVE(and(mark(x1), x2))
Used ordering: Polynomial interpretation with max and min functions [25]:
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = x1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1
POL(tt) = 0
POL(zeros) = 0
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
s(mark(x1)) → s(x1)
s(active(x1)) → s(x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(take(x1, x2)) → ACTIVE(take(mark(x1), mark(x2)))
Used ordering: Polynomial interpretation [25]:
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → ACTIVE(s(mark(x1)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x1
POL(cons(x1, x2)) = x1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1
POL(tt) = 0
POL(zeros) = 0
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
s(mark(x1)) → s(x1)
s(active(x1)) → s(x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(s(x1)) → ACTIVE(s(mark(x1)))
MARK(cons(x1, x2)) → ACTIVE(cons(mark(x1), x2))
Used ordering: Polynomial interpretation with max and min functions [25]:
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1
POL(active(x1)) = 0
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(length(x1)) = 1
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(tt) = 0
POL(zeros) = 1
cons(mark(x1), x2) → cons(x1, x2)
cons(active(x1), x2) → cons(x1, x2)
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
s(mark(x1)) → s(x1)
s(active(x1)) → s(x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
ACTIVE(zeros) → MARK(cons(0, zeros))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(zeros) → MARK(cons(0, zeros))
Used ordering: Polynomial interpretation with max and min functions [25]:
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(zeros) → ACTIVE(zeros)
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
POL(0) = 0
POL(ACTIVE(x1)) = 1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = 0
POL(cons(x1, x2)) = x1
POL(length(x1)) = 1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1
POL(tt) = 0
POL(zeros) = 1
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
s(mark(x1)) → s(x1)
s(active(x1)) → s(x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(zeros) → ACTIVE(zeros)
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(cons(x1, x2)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(cons(x1, x2)) → MARK(x1)
Used ordering: Polynomial interpretation with max and min functions [25]:
MARK(s(x1)) → MARK(x1)
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(length(x1)) → ACTIVE(length(mark(x1)))
POL(0) = 0
POL(ACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(and(x1, x2)) = x1
POL(cons(x1, x2)) = 1 + x1
POL(length(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 0
POL(tt) = 0
POL(zeros) = 0
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
s(mark(x1)) → s(x1)
s(active(x1)) → s(x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
ACTIVE(length(cons(N, L))) → MARK(s(length(L)))
MARK(s(x1)) → MARK(x1)
MARK(length(x1)) → ACTIVE(length(mark(x1)))
active(zeros) → mark(cons(0, zeros))
active(length(cons(N, L))) → mark(s(length(L)))
active(take(s(M), cons(N, IL))) → mark(cons(N, take(M, IL)))
mark(zeros) → active(zeros)
mark(cons(x1, x2)) → active(cons(mark(x1), x2))
cons(active(x1), x2) → cons(x1, x2)
cons(mark(x1), x2) → cons(x1, x2)
mark(0) → active(0)
mark(and(x1, x2)) → active(and(mark(x1), x2))
and(active(x1), x2) → and(x1, x2)
and(mark(x1), x2) → and(x1, x2)
mark(tt) → active(tt)
mark(length(x1)) → active(length(mark(x1)))
length(active(x1)) → length(x1)
length(mark(x1)) → length(x1)
mark(nil) → active(nil)
mark(s(x1)) → active(s(mark(x1)))
s(active(x1)) → s(x1)
s(mark(x1)) → s(x1)
mark(take(x1, x2)) → active(take(mark(x1), mark(x2)))
take(active(x1), x2) → take(x1, x2)
take(mark(x1), x2) → take(x1, x2)
take(x1, active(x2)) → take(x1, x2)
take(x1, mark(x2)) → take(x1, x2)
active(zeros)
active(and(tt, x0))
active(length(nil))
active(length(cons(x0, x1)))
active(take(0, x0))
active(take(s(x0), cons(x1, x2)))
mark(zeros)
mark(cons(x0, x1))
cons(active(x0), x1)
cons(mark(x0), x1)
mark(0)
mark(and(x0, x1))
and(active(x0), x1)
and(mark(x0), x1)
mark(tt)
mark(length(x0))
length(active(x0))
length(mark(x0))
mark(nil)
mark(s(x0))
s(active(x0))
s(mark(x0))
mark(take(x0, x1))
take(active(x0), x1)
take(mark(x0), x1)
take(x0, active(x1))
take(x0, mark(x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros → cons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
Used ordering:
and(tt, X) → X
POL(0) = 0
POL(and(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(length(x1)) = 2·x1
POL(nil) = 0
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = 2·x1 + 2·x2
POL(tt) = 1
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros → cons(0, zeros)
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
Used ordering:
length(nil) → 0
POL(0) = 0
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(nil) = 2
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + 2·x1 + x2
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
Used ordering:
take(0, IL) → nil
POL(0) = 0
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(nil) = 1
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zeros) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ Improved Ferreira Ribeiro-Transformation
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
LENGTH(cons(N, L)) → LENGTH(L)
ZEROS → ZEROS
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
ZEROS → ZEROS
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ Improved Ferreira Ribeiro-Transformation
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDP
↳ Improved Ferreira Ribeiro-Transformation
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ Improved Ferreira Ribeiro-Transformation
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ Improved Ferreira Ribeiro-Transformation
LENGTH(cons(N, L)) → LENGTH(L)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ Improved Ferreira Ribeiro-Transformation
ZEROS → ZEROS
zeros → cons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ Improved Ferreira Ribeiro-Transformation
ZEROS → ZEROS
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ Improved Ferreira Ribeiro-Transformation
ZEROS → ZEROS
ZEROS → ZEROS
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
zeros → cons(0, zerosInact)
and(tt, X) → a(X)
length(nil) → 0
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
zeros → cons(0, zerosInact)
and(tt, X) → a(X)
length(nil) → 0
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
Used ordering:
and(tt, X) → a(X)
POL(0) = 0
POL(a(x1)) = x1
POL(and(x1, x2)) = 1 + 2·x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(length(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(takeInact(x1, x2)) = x1 + 2·x2
POL(tt) = 1
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
zeros → cons(0, zerosInact)
length(nil) → 0
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
zeros → cons(0, zerosInact)
length(nil) → 0
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
Used ordering:
length(nil) → 0
POL(0) = 0
POL(a(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2 + 2·x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 2·x1 + x2
POL(takeInact(x1, x2)) = 2·x1 + x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
Used ordering:
take(0, IL) → nil
POL(0) = 0
POL(a(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2
POL(takeInact(x1, x2)) = 1 + 2·x1 + 2·x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
A(zerosInact) → ZEROS
LENGTH(cons(N, L)) → A(L)
A(takeInact(x1, x2)) → TAKE(a(x1), a(x2))
TAKE(s(M), cons(N, IL)) → A(IL)
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
LENGTH(cons(N, L)) → LENGTH(a(L))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
A(zerosInact) → ZEROS
LENGTH(cons(N, L)) → A(L)
A(takeInact(x1, x2)) → TAKE(a(x1), a(x2))
TAKE(s(M), cons(N, IL)) → A(IL)
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
LENGTH(cons(N, L)) → LENGTH(a(L))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
A(takeInact(x1, x2)) → TAKE(a(x1), a(x2))
TAKE(s(M), cons(N, IL)) → A(IL)
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
A(takeInact(x1, x2)) → TAKE(a(x1), a(x2))
TAKE(s(M), cons(N, IL)) → A(IL)
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
a(x) → x
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
zeros → zerosInact
The following rules are removed from R:
TAKE(s(M), cons(N, IL)) → A(IL)
Used ordering: POLO with Polynomial interpretation [25]:
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
POL(0) = 0
POL(A(x1)) = 2·x1
POL(TAKE(x1, x2)) = x1 + 2·x2
POL(a(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(s(x1)) = 2 + 2·x1
POL(take(x1, x2)) = 2·x1 + 2·x2
POL(takeInact(x1, x2)) = 2·x1 + 2·x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
A(takeInact(x1, x2)) → TAKE(a(x1), a(x2))
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
a(x) → x
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
zeros → zerosInact
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
a(x) → x
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
zeros → zerosInact
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
A(takeInact(x1, x2)) → A(x1)
A(takeInact(x1, x2)) → A(x2)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(a(L))
zeros → cons(0, zerosInact)
length(cons(N, L)) → s(length(a(L)))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
a(x) → x
zeros → zerosInact
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
a(takeInact(x1, x2)) → take(a(x1), a(x2))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
LENGTH(cons(N, L)) → LENGTH(a(L))
a(x) → x
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
zeros → zerosInact
Used ordering: POLO with Polynomial interpretation [25]:
take(s(M), cons(N, IL)) → cons(N, takeInact(M, a(IL)))
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(a(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = x1 + x2
POL(takeInact(x1, x2)) = x1 + x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
LENGTH(cons(N, L)) → LENGTH(a(L))
a(x) → x
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
zeros → zerosInact
a(x) → x
zeros → zerosInact
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(a(x1)) = 1 + 2·x1
POL(cons(x1, x2)) = 1 + 2·x1 + 2·x2
POL(take(x1, x2)) = 2 + x1 + 2·x2
POL(takeInact(x1, x2)) = 2 + x1 + 2·x2
POL(zeros) = 1
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
a(zerosInact)
a(takeInact(x0, x1))
take(x0, x1)
zeros
a(takeInact(x1, x2)) → take(a(x1), a(x2))
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(a(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(takeInact(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zeros) = 0
POL(zerosInact) = 0
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
take(x1, x2) → takeInact(x1, x2)
zeros → cons(0, zerosInact)
a(zerosInact)
a(takeInact(x0, x1))
take(x0, x1)
zeros
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
zeros → cons(0, zerosInact)
a(zerosInact)
a(takeInact(x0, x1))
take(x0, x1)
zeros
take(x0, x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
LENGTH(cons(N, L)) → LENGTH(a(L))
a(zerosInact) → zeros
zeros → cons(0, zerosInact)
a(zerosInact)
a(takeInact(x0, x1))
zeros
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
a(zerosInact) → zeros
zeros → cons(0, zerosInact)
a(zerosInact)
a(takeInact(x0, x1))
zeros
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
zeros → cons(0, zerosInact)
a(zerosInact)
a(takeInact(x0, x1))
zeros
a(zerosInact)
a(takeInact(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
LENGTH(cons(y0, zerosInact)) → LENGTH(zeros)
zeros → cons(0, zerosInact)
zeros
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
zeros → cons(0, zerosInact)
zeros
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
zeros
zeros
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
LENGTH(cons(y0, zerosInact)) → LENGTH(cons(0, zerosInact))
LENGTH(cons(0, zerosInact)) → LENGTH(cons(0, zerosInact))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ Zantema-Transformation
↳ Innermost Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ Improved Ferreira Ribeiro-Transformation
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
LENGTH(cons(0, zerosInact)) → LENGTH(cons(0, zerosInact))
LENGTH(cons(0, zerosInact)) → LENGTH(cons(0, zerosInact))