U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11: {1}
tt: empty set
U12: {1}
splitAt: {1, 2}
pair: {1, 2}
cons: {1}
afterNth: {1, 2}
snd: {1}
and: {1}
fst: {1}
head: {1}
natsFrom: {1}
s: {1}
sel: {1, 2}
0: empty set
nil: empty set
tail: {1}
take: {1, 2}
↳ CSR
↳ CSRInnermostProof
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11: {1}
tt: empty set
U12: {1}
splitAt: {1, 2}
pair: {1, 2}
cons: {1}
afterNth: {1, 2}
snd: {1}
and: {1}
fst: {1}
head: {1}
natsFrom: {1}
s: {1}
sel: {1, 2}
0: empty set
nil: empty set
tail: {1}
take: {1, 2}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11: {1}
tt: empty set
U12: {1}
splitAt: {1, 2}
pair: {1, 2}
cons: {1}
afterNth: {1, 2}
snd: {1}
and: {1}
fst: {1}
head: {1}
natsFrom: {1}
s: {1}
sel: {1, 2}
0: empty set
nil: empty set
tail: {1}
take: {1, 2}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
U111(tt, N, X, XS) → U121(splitAt(N, XS), X)
U111(tt, N, X, XS) → SPLITAT(N, XS)
AFTERNTH(N, XS) → SND(splitAt(N, XS))
AFTERNTH(N, XS) → SPLITAT(N, XS)
SEL(N, XS) → HEAD(afterNth(N, XS))
SEL(N, XS) → AFTERNTH(N, XS)
SPLITAT(s(N), cons(X, XS)) → U111(tt, N, X, XS)
TAKE(N, XS) → FST(splitAt(N, XS))
TAKE(N, XS) → SPLITAT(N, XS)
U111(tt, N, X, XS) → N
U111(tt, N, X, XS) → XS
U121(pair(YS, ZS), X) → X
AND(tt, X) → X
TAIL(cons(N, XS)) → XS
natsFrom(s(N))
s on positions {1}
natsFrom on positions {1}
U111(tt, N, X, XS) → U(N)
U111(tt, N, X, XS) → U(XS)
U121(pair(YS, ZS), X) → U(X)
AND(tt, X) → U(X)
TAIL(cons(N, XS)) → U(XS)
U(s(x_0)) → U(x_0)
U(natsFrom(x_0)) → U(x_0)
U(natsFrom(s(N))) → NATSFROM(s(N))
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11(tt, x0, x1, x2)
U12(pair(x0, x1), x2)
afterNth(x0, x1)
and(tt, x0)
fst(pair(x0, x1))
head(cons(x0, x1))
natsFrom(x0)
sel(x0, x1)
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
tail(cons(x0, x1))
take(x0, x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
U(s(x_0)) → U(x_0)
U(natsFrom(x_0)) → U(x_0)
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11(tt, x0, x1, x2)
U12(pair(x0, x1), x2)
afterNth(x0, x1)
and(tt, x0)
fst(pair(x0, x1))
head(cons(x0, x1))
natsFrom(x0)
sel(x0, x1)
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
tail(cons(x0, x1))
take(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(s(x_0)) → U(x_0)
U(natsFrom(x_0)) → U(x_0)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11(tt, x0, x1, x2)
U12(pair(x0, x1), x2)
afterNth(x0, x1)
and(tt, x0)
fst(pair(x0, x1))
head(cons(x0, x1))
natsFrom(x0)
sel(x0, x1)
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
tail(cons(x0, x1))
take(x0, x1)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
U111(tt, N, X, XS) → SPLITAT(N, XS)
SPLITAT(s(N), cons(X, XS)) → U111(tt, N, X, XS)
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11(tt, x0, x1, x2)
U12(pair(x0, x1), x2)
afterNth(x0, x1)
and(tt, x0)
fst(pair(x0, x1))
head(cons(x0, x1))
natsFrom(x0)
sel(x0, x1)
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
tail(cons(x0, x1))
take(x0, x1)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SPLITAT(s(N), cons(X, XS)) → U111(tt, N, X, XS)
Used ordering: Combined order from the following AFS and order.
U111(tt, N, X, XS) → SPLITAT(N, XS)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
U111(tt, N, X, XS) → SPLITAT(N, XS)
U11(tt, N, X, XS) → U12(splitAt(N, XS), X)
U12(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → X
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, XS)
tail(cons(N, XS)) → XS
take(N, XS) → fst(splitAt(N, XS))
U11(tt, x0, x1, x2)
U12(pair(x0, x1), x2)
afterNth(x0, x1)
and(tt, x0)
fst(pair(x0, x1))
head(cons(x0, x1))
natsFrom(x0)
sel(x0, x1)
snd(pair(x0, x1))
splitAt(0, x0)
splitAt(s(x0), cons(x1, x2))
tail(cons(x0, x1))
take(x0, x1)