(VAR N XS YS X ZS) (STRATEGY CONTEXTSENSITIVE (natsFrom 1) (cons 1) (s 1) (fst 1) (pair 1 2) (snd 1) (splitAt 1 2) (0) (nil) (u 1) (head 1) (tail 1) (sel 1 2) (afterNth 1 2) (take 1 2) ) (RULES natsFrom(N) -> cons(N,natsFrom(s(N))) fst(pair(XS,YS)) -> XS snd(pair(XS,YS)) -> YS splitAt(0,XS) -> pair(nil,XS) splitAt(s(N),cons(X,XS)) -> u(splitAt(N,XS),N,X,XS) u(pair(YS,ZS),N,X,XS) -> pair(cons(X,YS),ZS) head(cons(N,XS)) -> N tail(cons(N,XS)) -> XS sel(N,XS) -> head(afterNth(N,XS)) take(N,XS) -> fst(splitAt(N,XS)) afterNth(N,XS) -> snd(splitAt(N,XS)) ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for ExSec4_2_DLMMU04: -> Dependency pairs: nF_splitAt(s(N),cons(X,XS)) -> nF_u(splitAt(N,XS),N,X,XS) nF_splitAt(s(N),cons(X,XS)) -> nF_splitAt(N,XS) nF_splitAt(s(N),cons(X,XS)) -> XS nF_u(pair(YS,ZS),N,X,XS) -> X nF_tail(cons(N,XS)) -> XS nF_sel(N,XS) -> nF_head(afterNth(N,XS)) nF_sel(N,XS) -> nF_afterNth(N,XS) nF_take(N,XS) -> nF_fst(splitAt(N,XS)) nF_take(N,XS) -> nF_splitAt(N,XS) nF_afterNth(N,XS) -> nF_snd(splitAt(N,XS)) nF_afterNth(N,XS) -> nF_splitAt(N,XS) -> Proof of termination for ExSec4_2_DLMMU04_1: -> -> Dependency pairs in cycle: nF_splitAt(s(N),cons(X,XS)) -> nF_splitAt(N,XS) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.