(VAR X Y) (STRATEGY CONTEXTSENSITIVE (nats) (adx 1) (zeros) (cons) (0) (incr 1) (s) (hd 1) (tl 1) ) (RULES nats -> adx(zeros) zeros -> cons(0,zeros) incr(cons(X,Y)) -> cons(s(X),incr(Y)) adx(cons(X,Y)) -> incr(cons(X,adx(Y))) hd(cons(X,Y)) -> X tl(cons(X,Y)) -> Y ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for ExIntrod_GM04: -> Dependency pairs: nF_nats -> nF_adx(zeros) nF_nats -> nF_zeros nF_adx(cons(X,Y)) -> nF_incr(cons(X,adx(Y))) nF_hd(cons(X,Y)) -> X nF_tl(cons(X,Y)) -> Y -> Proof of termination for ExIntrod_GM04_1: Termination proved: No cycles in dependency graph. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.