(VAR X L) (STRATEGY CONTEXTSENSITIVE (incr 1) (nil) (cons 1) (s 1) (adx 1) (nats) (zeros) (0) (head 1) (tail 1) ) (RULES incr(nil) -> nil incr(cons(X,L)) -> cons(s(X),incr(L)) adx(nil) -> nil adx(cons(X,L)) -> incr(cons(X,adx(L))) nats -> adx(zeros) zeros -> cons(0,zeros) head(cons(X,L)) -> X tail(cons(X,L)) -> L ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for ExIntrod_GM01: -> Dependency pairs: nF_adx(cons(X,L)) -> nF_incr(cons(X,adx(L))) nF_nats -> nF_adx(zeros) nF_nats -> nF_zeros nF_tail(cons(X,L)) -> L -> Proof of termination for ExIntrod_GM01_1: Termination proved: No cycles in dependency graph. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.