(VAR X Z N Y) (STRATEGY CONTEXTSENSITIVE (from 1) (cons 1) (s 1) (2ndspos 1 2) (0) (rnil) (cons2 2) (rcons 1 2) (posrecip 1) (2ndsneg 1 2) (negrecip 1) (pi 1) (plus 1 2) (times 1 2) (square 1) ) (RULES from(X) -> cons(X,from(s(X))) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,Z)) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,Z)) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) square(X) -> times(X,X) ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for ExAppendixB_AEL03: -> Dependency pairs: nF_2ndspos(s(N),cons(X,Z)) -> nF_2ndspos(s(N),cons2(X,Z)) nF_2ndspos(s(N),cons(X,Z)) -> Z nF_2ndspos(s(N),cons2(X,cons(Y,Z))) -> nF_2ndsneg(N,Z) nF_2ndspos(s(N),cons2(X,cons(Y,Z))) -> Z nF_2ndsneg(s(N),cons(X,Z)) -> nF_2ndsneg(s(N),cons2(X,Z)) nF_2ndsneg(s(N),cons(X,Z)) -> Z nF_2ndsneg(s(N),cons2(X,cons(Y,Z))) -> nF_2ndspos(N,Z) nF_2ndsneg(s(N),cons2(X,cons(Y,Z))) -> Z nF_pi(X) -> nF_2ndspos(X,from(0)) nF_pi(X) -> nF_from(0) nF_plus(s(X),Y) -> nF_plus(X,Y) nF_times(s(X),Y) -> nF_plus(Y,times(X,Y)) nF_times(s(X),Y) -> nF_times(X,Y) nF_square(X) -> nF_times(X,X) -> Proof of termination for ExAppendixB_AEL03_1_1: -> -> Dependency pairs in cycle: nF_times(s(X),Y) -> nF_times(X,Y) Termination proved: Cycles verify subterm criterion. -> Proof of termination for ExAppendixB_AEL03_1_2: -> -> Dependency pairs in cycle: nF_plus(s(X),Y) -> nF_plus(X,Y) Termination proved: Cycles verify subterm criterion. -> Proof of termination for ExAppendixB_AEL03_1_3: -> -> Dependency pairs in cycle: nF_2ndspos(s(N),cons(X,Z)) -> nF_2ndspos(s(N),cons2(X,Z)) nF_2ndsneg(s(N),cons2(X,cons(Y,Z))) -> nF_2ndspos(N,Z) nF_2ndsneg(s(N),cons(X,Z)) -> nF_2ndsneg(s(N),cons2(X,Z)) nF_2ndspos(s(N),cons2(X,cons(Y,Z))) -> nF_2ndsneg(N,Z) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.