(VAR X X1 X2 X3) (RULES a__f(a,X,X) -> a__f(X,a__b,b) a__b -> a mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) mark(b) -> a__b mark(a) -> a a__f(X1,X2,X3) -> f(X1,X2,X3) a__b -> b ) Proving termination of rewriting for Ex9_Luc06_GM: -> Dependency pairs: nF_a__f(a,X,X) -> nF_a__f(X,a__b,b) nF_a__f(a,X,X) -> nF_a__b nF_mark(f(X1,X2,X3)) -> nF_a__f(X1,mark(X2),X3) nF_mark(f(X1,X2,X3)) -> nF_mark(X2) nF_mark(b) -> nF_a__b -> Proof of termination for Ex9_Luc06_GM_1_1: -> -> Dependency pairs in cycle: nF_mark(f(X1,X2,X3)) -> nF_mark(X2) Termination proved: Cycles verify subterm criterion. -> Proof of termination for Ex9_Luc06_GM_1_2: -> -> Dependency pairs in cycle: nF_a__f(a,X,X) -> nF_a__f(X,a__b,b) Usable Rules: a__b -> a a__b -> b Polynomial Interpretation: [f](X1,X2,X3) = 0 [a] = 1 [b] = 0 [a__f](X1,X2,X3) = 0 [a__b] = 1 [mark](X) = 0 [nF_a__f](X1,X2,X3) = X1 + X3 TIME: 1.5999e-2 SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in DG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.