first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
first: {1, 2}
0: empty set
nil: empty set
s: {1}
cons: {1}
from: {1}
↳ CSR
↳ CSRInnermostProof
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
first: {1, 2}
0: empty set
nil: empty set
s: {1}
cons: {1}
from: {1}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
first: {1, 2}
0: empty set
nil: empty set
s: {1}
cons: {1}
from: {1}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
first(X, Z)
from(s(X))
first on positions {1, 2}
s on positions {1}
from on positions {1}
U(first(x_0, x_1)) → U(x_0)
U(first(x_0, x_1)) → U(x_1)
U(s(x_0)) → U(x_0)
U(from(x_0)) → U(x_0)
U(first(X, Z)) → FIRST(X, Z)
U(from(s(X))) → FROM(s(X))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
U(first(x_0, x_1)) → U(x_0)
U(first(x_0, x_1)) → U(x_1)
U(s(x_0)) → U(x_0)
U(from(x_0)) → U(x_0)
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(first(x_0, x_1)) → U(x_0)
U(first(x_0, x_1)) → U(x_1)
U(s(x_0)) → U(x_0)
U(from(x_0)) → U(x_0)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, first(X, Z))
from(X) → cons(X, from(s(X)))
first(0, x0)
first(s(x0), cons(x1, x2))
from(x0)