(VAR X XS N Y YS) (STRATEGY CONTEXTSENSITIVE (from 1) (cons 1) (s 1) (sel 1 2) (0) (minus 1 2) (quot 1 2) (zWquot 1 2) (nil) ) (RULES from(X) -> cons(X,from(s(X))) sel(0,cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,XS) minus(X,0) -> 0 minus(s(X),s(Y)) -> minus(X,Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) zWquot(XS,nil) -> nil zWquot(nil,XS) -> nil zWquot(cons(X,XS),cons(Y,YS)) -> cons(quot(X,Y),zWquot(XS,YS)) ) Proving termination of context-sensitive rewriting for Ex4_7_37_Bor03: -> Dependency pairs: nF_sel(s(N),cons(X,XS)) -> nF_sel(N,XS) nF_sel(s(N),cons(X,XS)) -> XS nF_minus(s(X),s(Y)) -> nF_minus(X,Y) nF_quot(s(X),s(Y)) -> nF_quot(minus(X,Y),s(Y)) nF_quot(s(X),s(Y)) -> nF_minus(X,Y) nF_zWquot(cons(X,XS),cons(Y,YS)) -> nF_quot(X,Y) -> Proof of termination for Ex4_7_37_Bor03_1_1: -> -> Dependency pairs in cycle: nF_sel(s(N),cons(X,XS)) -> nF_sel(N,XS) Termination proved: Cycles verify subterm criterion. -> Proof of termination for Ex4_7_37_Bor03_1_2: -> -> Dependency pairs in cycle: nF_quot(s(X),s(Y)) -> nF_quot(minus(X,Y),s(Y)) Usable Rules: minus(X,0) -> 0 minus(s(X),s(Y)) -> minus(X,Y) Polynomial Interpretation: [from](X) = 0 [cons](X1,X2) = 0 [s](X) = 1 [sel](X1,X2) = 0 [0] = 0 [minus](X1,X2) = 0 [quot](X1,X2) = 0 [zWquot](X1,X2) = 0 [nil] = 0 [nF_quot](X1,X2) = X1 TIME: 0.107523 -> Proof of termination for Ex4_7_37_Bor03_1_3: -> -> Dependency pairs in cycle: nF_minus(s(X),s(Y)) -> nF_minus(X,Y) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.