(VAR N X Y Z) (STRATEGY CONTEXTSENSITIVE (terms 1) (cons 1) (recip 1) (sqr 1) (s 1) (0) (add 1 2) (dbl 1) (first 1 2) (nil) ) (RULES terms(N) -> cons(recip(sqr(N)),terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0,X) -> X add(s(X),Y) -> s(add(X,Y)) first(0,X) -> nil first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z)) ) The TRS is orthogonal, thus termination of innermost context-sensitive rewriting is equivalent to termination of context-sensitive rewriting. Proving termination of context-sensitive rewriting for Ex2_Luc02a: -> Dependency pairs: nF_terms(N) -> nF_sqr(N) nF_sqr(s(X)) -> nF_add(sqr(X),dbl(X)) nF_sqr(s(X)) -> nF_sqr(X) nF_sqr(s(X)) -> nF_dbl(X) nF_dbl(s(X)) -> nF_dbl(X) nF_add(s(X),Y) -> nF_add(X,Y) -> Proof of termination for Ex2_Luc02a_1_1: -> -> Dependency pairs in cycle: nF_sqr(s(X)) -> nF_sqr(X) Termination proved: Cycles verify subterm criterion. -> Proof of termination for Ex2_Luc02a_1_2: -> -> Dependency pairs in cycle: nF_add(s(X),Y) -> nF_add(X,Y) Termination proved: Cycles verify subterm criterion. -> Proof of termination for Ex2_Luc02a_1_3: -> -> Dependency pairs in cycle: nF_dbl(s(X)) -> nF_dbl(X) Termination proved: Cycles verify subterm criterion. SETTINGS: Base ordering: Polynomial ordering Proof mode: SCCs in CSDG + base ordering Upper bound for coeffs: 1 Rationals below 1 for all non-replacing args: No Polynomial interpretation: Linear Coeffs in polynomials: No rationals Delta: automatic Termination was proved succesfully.