nats → cons(0, incr(nats))
pairs → cons(0, incr(odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), incr(XS))
head(cons(X, XS)) → X
tail(cons(X, XS)) → XS
nats: empty set
cons: {1}
0: empty set
incr: {1}
pairs: empty set
odds: empty set
s: {1}
head: {1}
tail: {1}
↳ CSR
↳ CSRInnermostProof
nats → cons(0, incr(nats))
pairs → cons(0, incr(odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), incr(XS))
head(cons(X, XS)) → X
tail(cons(X, XS)) → XS
nats: empty set
cons: {1}
0: empty set
incr: {1}
pairs: empty set
odds: empty set
s: {1}
head: {1}
tail: {1}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
nats → cons(0, incr(nats))
pairs → cons(0, incr(odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), incr(XS))
head(cons(X, XS)) → X
tail(cons(X, XS)) → XS
nats: empty set
cons: {1}
0: empty set
incr: {1}
pairs: empty set
odds: empty set
s: {1}
head: {1}
tail: {1}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
ODDS → INCR(pairs)
ODDS → PAIRS
TAIL(cons(X, XS)) → XS
incr(nats)
nats
incr(odds)
odds
incr(XS)
incr on positions {1}
TAIL(cons(X, XS)) → U(XS)
U(incr(x_0)) → U(x_0)
U(incr(nats)) → INCR(nats)
U(nats) → NATS
U(incr(odds)) → INCR(odds)
U(odds) → ODDS
U(incr(XS)) → INCR(XS)
nats → cons(0, incr(nats))
pairs → cons(0, incr(odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), incr(XS))
head(cons(X, XS)) → X
tail(cons(X, XS)) → XS
nats
pairs
odds
incr(cons(x0, x1))
head(cons(x0, x1))
tail(cons(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
U(incr(x_0)) → U(x_0)
nats → cons(0, incr(nats))
pairs → cons(0, incr(odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), incr(XS))
head(cons(X, XS)) → X
tail(cons(X, XS)) → XS
nats
pairs
odds
incr(cons(x0, x1))
head(cons(x0, x1))
tail(cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(incr(x_0)) → U(x_0)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
nats → cons(0, incr(nats))
pairs → cons(0, incr(odds))
odds → incr(pairs)
incr(cons(X, XS)) → cons(s(X), incr(XS))
head(cons(X, XS)) → X
tail(cons(X, XS)) → XS
nats
pairs
odds
incr(cons(x0, x1))
head(cons(x0, x1))
tail(cons(x0, x1))