* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
main(Nil()) -> Nil()
walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
walk#1(Nil()) -> walk_xs()
- Signature:
{comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
,comp_f_g,walk_xs,walk_xs_3}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
main(Nil()) -> Nil()
walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
walk#1(Nil()) -> walk_xs()
- Signature:
{comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
,comp_f_g,walk_xs,walk_xs_3}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
walk#1(y){y -> Cons(x,y)} =
walk#1(Cons(x,y)) ->^+ comp_f_g(walk#1(y),walk_xs_3(x))
= C[walk#1(y) = walk#1(y){}]
** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
main(Nil()) -> Nil()
walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
walk#1(Nil()) -> walk_xs()
- Signature:
{comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
,comp_f_g,walk_xs,walk_xs_3}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
Cons_0(2,2) -> 2
Cons_1(2,1) -> 1
Cons_1(2,2) -> 1
Cons_1(2,2) -> 3
Cons_1(2,3) -> 1
Cons_1(2,4) -> 1
Cons_2(2,1) -> 1
Cons_2(2,3) -> 1
Cons_2(2,3) -> 4
Cons_2(2,4) -> 1
Nil_0() -> 2
Nil_1() -> 1
Nil_1() -> 3
comp_f_g_0(2,2) -> 2
comp_f_g_1(2,2) -> 1
comp_f_g_1(2,2) -> 2
comp_f_g#1_0(2,2,2) -> 1
comp_f_g#1_1(2,2,1) -> 1
comp_f_g#1_1(2,2,3) -> 1
comp_f_g#1_2(2,2,1) -> 1
comp_f_g#1_2(2,2,4) -> 1
main_0(2) -> 1
walk#1_0(2) -> 1
walk#1_1(2) -> 2
walk_xs_0() -> 2
walk_xs_1() -> 1
walk_xs_1() -> 2
walk_xs_3_0(2) -> 2
walk_xs_3_1(2) -> 2
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
main(Nil()) -> Nil()
walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
walk#1(Nil()) -> walk_xs()
- Signature:
{comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
,comp_f_g,walk_xs,walk_xs_3}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))