* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,n__cons(Y,Z))) -> activate(Y)
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,n__cons(Y,Z))) -> activate(Y)
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__cons(x,y)} =
            activate(n__cons(x,y)) ->^+ cons(activate(x),y)
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,n__cons(Y,Z))) -> activate(Y)
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          2nd(cons(X,n__cons(Y,Z))) -> activate(Y)
        All above mentioned rules can be savely removed.
** Step 1.b:2: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {2nd,activate,cons,from,s}
        TcT has computed the following interpretation:
               p(2nd) = [1] x_1 + [2] 
          p(activate) = [8] x_1 + [0] 
              p(cons) = [1] x_1 + [11]
              p(from) = [1] x_1 + [13]
           p(n__cons) = [1] x_1 + [2] 
           p(n__from) = [1] x_1 + [2] 
              p(n__s) = [1] x_1 + [1] 
                 p(s) = [1] x_1 + [1] 
        
        Following rules are strictly oriented:
        activate(n__cons(X1,X2)) = [8] X1 + [16]           
                                 > [8] X1 + [11]           
                                 = cons(activate(X1),X2)   
        
            activate(n__from(X)) = [8] X + [16]            
                                 > [8] X + [13]            
                                 = from(activate(X))       
        
               activate(n__s(X)) = [8] X + [8]             
                                 > [8] X + [1]             
                                 = s(activate(X))          
        
                     cons(X1,X2) = [1] X1 + [11]           
                                 > [1] X1 + [2]            
                                 = n__cons(X1,X2)          
        
                         from(X) = [1] X + [13]            
                                 > [1] X + [11]            
                                 = cons(X,n__from(n__s(X)))
        
                         from(X) = [1] X + [13]            
                                 > [1] X + [2]             
                                 = n__from(X)              
        
        
        Following rules are (at-least) weakly oriented:
        activate(X) =  [8] X + [0]
                    >= [1] X + [0]
                    =  X          
        
               s(X) =  [1] X + [1]
                    >= [1] X + [1]
                    =  n__s(X)    
        
** Step 1.b:3: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            s(X) -> n__s(X)
        - Weak TRS:
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(cons) = {1},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {2nd,activate,cons,from,s}
        TcT has computed the following interpretation:
               p(2nd) = [2] x_1 + [0]
          p(activate) = [1] x_1 + [8]
              p(cons) = [1] x_1 + [0]
              p(from) = [1] x_1 + [0]
           p(n__cons) = [1] x_1 + [0]
           p(n__from) = [1] x_1 + [0]
              p(n__s) = [1] x_1 + [8]
                 p(s) = [1] x_1 + [8]
        
        Following rules are strictly oriented:
        activate(X) = [1] X + [8]
                    > [1] X + [0]
                    = X          
        
        
        Following rules are (at-least) weakly oriented:
        activate(n__cons(X1,X2)) =  [1] X1 + [8]            
                                 >= [1] X1 + [8]            
                                 =  cons(activate(X1),X2)   
        
            activate(n__from(X)) =  [1] X + [8]             
                                 >= [1] X + [8]             
                                 =  from(activate(X))       
        
               activate(n__s(X)) =  [1] X + [16]            
                                 >= [1] X + [16]            
                                 =  s(activate(X))          
        
                     cons(X1,X2) =  [1] X1 + [0]            
                                 >= [1] X1 + [0]            
                                 =  n__cons(X1,X2)          
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  cons(X,n__from(n__s(X)))
        
                         from(X) =  [1] X + [0]             
                                 >= [1] X + [0]             
                                 =  n__from(X)              
        
                            s(X) =  [1] X + [8]             
                                 >= [1] X + [8]             
                                 =  n__s(X)                 
        
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(2nd) = [0]         
            p(activate) = [2] x1 + [0]
                p(cons) = [1] x1 + [8]
                p(from) = [1] x1 + [8]
             p(n__cons) = [1] x1 + [6]
             p(n__from) = [1] x1 + [4]
                p(n__s) = [1] x1 + [4]
                   p(s) = [1] x1 + [6]
          
          Following rules are strictly oriented:
          s(X) = [1] X + [6]
               > [1] X + [4]
               = n__s(X)    
          
          
          Following rules are (at-least) weakly oriented:
                       activate(X) =  [2] X + [0]             
                                   >= [1] X + [0]             
                                   =  X                       
          
          activate(n__cons(X1,X2)) =  [2] X1 + [12]           
                                   >= [2] X1 + [8]            
                                   =  cons(activate(X1),X2)   
          
              activate(n__from(X)) =  [2] X + [8]             
                                   >= [2] X + [8]             
                                   =  from(activate(X))       
          
                 activate(n__s(X)) =  [2] X + [8]             
                                   >= [2] X + [6]             
                                   =  s(activate(X))          
          
                       cons(X1,X2) =  [1] X1 + [8]            
                                   >= [1] X1 + [6]            
                                   =  n__cons(X1,X2)          
          
                           from(X) =  [1] X + [8]             
                                   >= [1] X + [8]             
                                   =  cons(X,n__from(n__s(X)))
          
                           from(X) =  [1] X + [8]             
                                   >= [1] X + [4]             
                                   =  n__from(X)              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            cons(X1,X2) -> n__cons(X1,X2)
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
        - Signature:
            {2nd/1,activate/1,cons/2,from/1,s/1} / {n__cons/2,n__from/1,n__s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,cons,from,s} and constructors {n__cons
            ,n__from,n__s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))