* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
if_quot(x,y,false(),false()) -> 0()
if_quot(x,y,false(),true()) -> s(quot(x,y))
if_quot(x,y,true(),z) -> divByZeroError()
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,x) -> 0()
minus(x,0()) -> x
minus(0(),x) -> 0()
minus(s(x),s(y)) -> minus(x,y)
quot(x,y) -> if_quot(minus(x,y),y,le(y,0()),le(y,x))
- Signature:
{if_quot/4,le/2,minus/2,quot/2} / {0/0,divByZeroError/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {if_quot,le,minus,quot} and constructors {0,divByZeroError
,false,s,true}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
if_quot(x,y,false(),false()) -> 0()
if_quot(x,y,false(),true()) -> s(quot(x,y))
if_quot(x,y,true(),z) -> divByZeroError()
le(0(),y) -> true()
le(s(x),0()) -> false()
le(s(x),s(y)) -> le(x,y)
minus(x,x) -> 0()
minus(x,0()) -> x
minus(0(),x) -> 0()
minus(s(x),s(y)) -> minus(x,y)
quot(x,y) -> if_quot(minus(x,y),y,le(y,0()),le(y,x))
- Signature:
{if_quot/4,le/2,minus/2,quot/2} / {0/0,divByZeroError/0,false/0,s/1,true/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {if_quot,le,minus,quot} and constructors {0,divByZeroError
,false,s,true}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
le(x,y){x -> s(x),y -> s(y)} =
le(s(x),s(y)) ->^+ le(x,y)
= C[le(x,y) = le(x,y){}]
WORST_CASE(Omega(n^1),?)