
The Dependency Pair Framework for Automated
Complexity Analysis of Term Rewrite Systems?

Lars Noschinski1, Fabian Emmes2, and Jürgen Giesl2

1 Institut für Informatik, TU Munich, Germany
2 LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. We present a modular framework to analyze the innermost
runtime complexity of term rewrite systems (TRSs) automatically. Our
method is based on the dependency pair (DP) framework for termination
analysis. In contrast to previous work, we developed a direct adaptation
of successful termination techniques from the DP framework in order to
use them for complexity analysis. By extensive experimental results, we
demonstrate the power of our method compared to existing techniques.

1 Introduction

In practice, termination is often not sufficient, but one also has to ensure that al-
gorithms terminate in reasonable (e.g., polynomial) time. While termination of
TRSs is well studied, only recently first ground-breaking results were obtained
which adapt termination techniques in order to obtain polynomial complexity
bounds automatically, e.g., [2–5,7,9,13,14,16–18,20–22]. Here, [3,13,14] consider
the DP method [1, 10–12], which is one of the most popular termination tech-
niques for TRSs.3 Moreover, [22] introduces a modular approach for complexity
analysis based on relative rewriting, which has similarities to the DP method.

In this paper, we present a fresh adaptation of the DP framework for inner-
most runtime complexity analysis [13]. In contrast to [3, 13, 14], we follow the
original DP framework closely. This allows us to directly adapt the several termi-
nation techniques (“processors”) of the DP framework for complexity analysis.
Like [22], our method is modular. But in contrast to [22], which allows to inves-
tigate derivational complexity [15] we focus on innermost runtime complexity.
Hence, we can inherit the modularity aspects of the DP framework and benefit
from its transformation techniques, which increases power significantly.

After introducing preliminaries in Sect. 2, in Sect. 3 we adapt the concept
of dependency pairs from termination analysis to so-called dependency tuples
for complexity analysis. While the DP framework for termination works on DP
problems, we now work on DT problems (Sect. 4). Sect. 5 adapts the “proces-
sors” of the DP framework in order to analyze the complexity of DT problems.
We implemented our contributions in the termination analyzer AProVE. Due to
the results of this paper, in the International Termination Competition 2010,

? Supported by the DFG grant GI 274/5-3.
3 In addition, there are also several approaches to characterize complexity classes using

termination techniques like dependency pairs (e.g., [17]).

AProVE was the most powerful tool for innermost runtime complexity analysis.
This is confirmed by our experiments in Sect. 6, where we compare our technique
with previous approaches. All proofs can be found in the appendix.

2 Runtime Complexity of Term Rewriting

See e.g. [6] for the basics of term rewriting. Let T (Σ,V) be the set of all terms
over a signature Σ and a set of variables V where we just write T if Σ and V are
clear from the context. The arity of a function symbol f ∈ Σ is denoted by ar(f)
and the size of a term is |x| = 1 for x ∈ V and |f(t1, . . . , tn)| = 1+ |t1|+ . . .+ |tn|.
The derivation length of a term t w.r.t. a relation → is the length of the longest
sequence of →-steps starting with t, i.e., dl(t,→) = sup{n | ∃t′ ∈ T , t →n t′ },
cf. [15]. Here, for any set M ⊆ N ∪ {∞}, “supM” is the least upper bound of
M . Thus, dl(t,→) =∞ if t starts an infinite sequence of →-steps.

As an example, consider R = {dbl(0) → 0, dbl(s(x)) → s(s(dbl(x)))}. Then
dl(dbl(sn(0)),→R) = n+ 1, but dl(dbln(s(0)),→R) = 2n + n− 1.

For a TRS R with defined symbols Σd = { root(`) | ` → r ∈ R}, a term
f(t1, . . . , tn) is basic if f ∈ Σd and t1, . . . , tn do not contain symbols from Σd.
So for R above, the basic terms are dbl(sn(0)) and dbl(sn(x)) for n ∈ N, x ∈ V.
The (innermost) runtime complexity function rcR maps any n ∈ N to the length
of the longest sequence of i→R-steps starting with a basic term t with |t| ≤ n.
Here, “ i→R” is the innermost rewrite relation and TB is the set of all basic terms.

Definition 1 (Runtime Complexity [13]). For a TRS R, its runtime com-
plexity function rcR :N→N∪{∞} is rcR(n) = sup{ dl(t, i→R) | t ∈ TB , |t| ≤ n }.

If one only considers evaluations of basic terms, the runtime complexity of the
dbl-TRS is linear (rcR(n) = n−1 for n ≥ 2). But if one also permits evaluations
starting with terms like dbln(s(0)), the complexity of the dbl-TRS is exponential.

When analyzing the complexity of programs, one is typically only interested
in (innermost) evaluations where a defined function like dbl is applied to data
objects (i.e., to terms without defined symbols). Therefore, runtime complexity
corresponds to the usual notion of “complexity” for programs [4, 5]. So for any
TRS R, our goal is to determine the asymptotic complexity of the function rcR.

Definition 2 (Asymptotic Complexities). Let C = {Pol0,Pol1,Pol2, ...,∞}
with the order Pol0 < Pol1 < Pol2 < . . . < ∞. Let v be the reflexive closure
of <. For any function f : N → N ∪ {∞} we define its complexity ι(f) ∈ C as
follows: ι(f) = Polk if k is the smallest number with f(n) ∈ O(nk) and ι(f) =∞
if there is no such k. For any TRS R, we define its complexity ιR as ι(rcR).

So the dbl-TRS R has linear complexity, i.e., ιR = Pol1. As another example,
consider the following TRS R where “m” stands for “minus”.

Example 3. m(x, y)→ if(gt(x, y), x, y) gt(0, k)→ false p(0)→ 0
if(true, x, y)→ s(m(p(x), y)) gt(s(n), 0)→ true p(s(n))→n
if(false, x, y)→ 0 gt(s(n), s(k))→ gt(n, k)

The terms m(sn(0), sk(0)) start evaluations of quadratic length. So ιR = Pol2.

2

3 Dependency Tuples

In the DP method, for every f ∈ Σd one introduces a fresh symbol f] with ar(f)
= ar(f]). For a term t = f(t1, . . . , tn) with f ∈ Σd we define t] = f](t1, . . . , tn)
and let T] = { t] | t ∈ T , root(t) ∈ Σd }. Let Pos(t) contain all positions of t and
let Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd }. Then for every rule ` → r with
Posd(r) = {π1, . . . , πn}, its dependency pairs are `] → r|]π1

, . . . , `] → r|]πn
.

While DPs are useful for termination, for complexity we have to regard all de-
fined functions in a right-hand side at once. Thus, we extend the concept of
weak dependency pairs [13, 14] and only build a single dependency tuple ` →
[r|]π1

, . . . , r|]πn
] for each `→ r. To avoid handling tuples, for every n ≥ 0, we intro-

duce a fresh compound symbol Comn of arity n and use `→ Comn(r|]π1
, . . . , r|]πn

).

Definition 4 (Dependency Tuple). A dependency tuple is a rule of the form

s] → Comn(t]1, . . . , t
]
n) for s], t]1, . . . , t

]
n ∈ T]. Let `→ r be a rule with Posd(r) =

{π1, . . . , πn}. Then DT (`→ r) is defined4 to be `] → Comn(r|]π1
, . . . , r|]πn

). For
a TRS R, let DT (R) = {DT (`→ r) | `→ r ∈ R}.
Example 5. For the TRS R from Ex. 3, DT (R) is the following set of rules.

m](x, y)→Com2(if](gt(x, y), x, y), gt](x, y)) (1)

if](true, x, y)→Com2(m](p(x), y), p](x)) (2)

if](false, x, y)→Com0 (3)

p](0)→Com0 (4)

p](s(n))→Com0 (5)

gt](0, k)→Com0 (6)

gt](s(n), 0)→Com0 (7)

gt](s(n), s(k))→Com1(gt](n, k)) (8)

For termination, one analyzes chains of DPs, which correspond to sequences
of function calls that can occur in reductions. Since DTs represent several DPs,
we now obtain chain trees. (This is analogous to the path detection in [14]).

Definition 6 (Chain Tree). Let D be a set of DTs and R be a TRS. Let T be
a (possibly infinite) tree whose nodes are labeled with both a DT from D and a
substitution. Let the root node be labeled with (s] → Comn(. . .) | σ). Then T is a
(D,R)-chain tree for s]σ if the following holds for all nodes of T : If a node is

labeled with (u] → Comm(v]1, . . . , v
]
m) | µ), then u]µ is in normal form w.r.t. R.

Moreover, if this node has the children (p]1 → Comm1
(. . .) | τ1), . . . , (p]k →

Commk
(. . .) | τk), then there are pairwise different i1, . . . , ik ∈ {1, . . . ,m} with

v]ijµ
i→∗R p]jτj for all j ∈ {1, . . . , k}. A path in the chain tree is called a chain.5

Example 7. For the TRS R from Ex. 3 and its DTs from Ex. 5, the tree in Fig.
1 is a (DT (R),R)-chain tree for m](s(0), 0). Here, we use substitutions with
σ(x) = s(0) and σ(y) = 0, τ(x) = τ(y) = 0, and µ(n) = µ(k) = 0.

For any term s] ∈ T], we define its complexity as the maximal number of
nodes in any chain tree for s]. However, sometimes we do not want to count all
DTs in the chain tree, but only the DTs from some subset S. This will be crucial
to adapt termination techniques for complexity, cf. Sect. 5.2 and 5.4.

4 To make DT (`→ r) unique, we use a total order < on positions where π1 < ... < πn.
5 These chains correspond to the “innermost chains” in the DP framework [1,10,11].

3

m](x, y)→ Com2(if](gt(x, y), x, y), gt](x, y)) | σ

if](true, x, y)→ Com2(m](p(x), y), p](x)) | σ gt](s(n), 0)→ Com0 | µ

m](x, y)→ Com2(if](gt(x, y), x, y), gt](x, y)) | τ p](s(n))→ Com0 | µ

if](false, x, y)→ Com0 | τ gt](0, k)→ Com0 | µ

Fig. 1. Chain Tree for the TRS from Ex. 3

Definition 8 (Complexity of Terms, Cplx 〈D,S,R〉). Let D be a set of depen-

dency tuples, S ⊆ D, R a TRS, and s] ∈ T]. Then Cplx 〈D,S,R〉(s
]) ∈ N ∪ {∞}

is the maximal number of nodes from S occurring in any (D,R)-chain tree for
s]. If there is no (D,R)-chain tree for s], then Cplx 〈D,S,R〉(s

]) = 0.

Example 9. For R from Ex. 3, we have Cplx 〈DT (R),DT (R),R〉(m
](s(0), 0)) = 7,

since the maximal tree for m](s(0), 0) in Fig. 1 has 7 nodes. In contrast, if S is
DT (R) without the gt]-DTs (6) – (8), then Cplx 〈DT (R),S,R〉(m

](s(0), 0)) = 5.

Thm. 10 shows how dependency tuples can be used to approximate the
derivation lengths of terms. More precisely, Cplx 〈DT (R),DT (R),R〉(t

]) is an up-
per bound for t’s derivation length, provided that t is in argument normal form.

Theorem 10 (Cplx bounds Derivation Length). Let R be a TRS. Let t =
f(t1, . . . , tn) ∈ T be in argument normal form, i.e., all ti are normal forms
w.r.t. R. Then we have dl(t, i→R) ≤ Cplx 〈DT (R),DT (R),R〉(t

]). If R is confluent,

we even have dl(t, i→R) = Cplx 〈DT (R),DT (R),R〉(t
]).

Note that DTs are much closer to the original DP method than the weak DPs
of [13,14] which only consider the topmost defined function symbols in right-hand
sides of rules. Hence, [13, 14] does not use DP concepts when defined functions
occur nested on right-hand sides (as in the m- and the first if-rule) and thus, it
cannot fully benefit from the advantages of the DP technique. Instead, [13, 14]
has to impose several restrictions which are not needed in our approach, cf. Foot-
note 9. The close analogy of our approach to the DP method allows us to adapt
the termination techniques of the DP framework in order to work on DTs (i.e.,
in order to analyze Cplx 〈DT (R),DT (R),R〉(t

]) for all base terms t of a certain size).
By Thm. 10, this yields an upper bound for the complexity ιR of the TRS R.
Note that there exist non-confluent TRSs6 where Cplx 〈DT (R),DT (R),R〉(t

]) is ex-
ponentially larger than dl(t, i→R) (this is in contrast to [13, 14], where the step
from TRSs to weak DPs does not change the complexity). However, our main in-
terest is in TRSs corresponding to “typical” (confluent) programs. Here, the step
from TRSs to DTs does not “lose” anything (i.e., one has equality in Thm. 10).

6 Consider the TRS f(s(x))→ f(g(x)), g(x)→ x, g(x)→ a(f(x)). Its runtime complex-
ity is linear, but for any n > 0, we have Cplx 〈DT (R),DT (R),R〉(f

](sn(0))) = 2n+1 − 2.

4

4 DT Problems

Our goal is to find out automatically how large Cplx 〈D,S,R〉(t
]) could be for basic

terms t of size n. To this end, we will repeatedly replace the triple 〈D,S,R〉 by
“simpler” triples 〈D′,S ′,R′〉 and examine Cplx 〈D′,S′,R′〉(t

]) instead.
This is similar to the DP framework where termination problems are repre-

sented by so-called DP problems (consisting of a set of DPs and a set of rules)
and where DP problems are transformed into “simpler” DP problems repeatedly.
For complexity analysis, we consider “DT problems” instead of “DP problems”.

Definition 11 (DT Problem). Let R be a TRS, D a set of DTs, S ⊆ D. Then
〈D,S,R〉 is a DT problem and R’s canonical DT problem is 〈DT (R),DT (R),R〉.

Thm. 10 showed the connection between the derivation length of a term and
the maximal number of nodes in a chain tree. This leads to the definition of the
complexity of a DT problem 〈D,S,R〉. It is defined as the asymptotic complexity
of the function rc〈D,S,R〉 which maps any number n to the maximal number of

S-nodes in any (D,R)-chain tree for t], where t is a basic term of at most size n.

Definition 12 (Complexity of DT Problems). For a DT problem 〈D,S,R〉,
its complexity function is rc〈D,S,R〉(n) = sup{ Cplx 〈D,S,R〉(t

]) | t ∈ TB , |t| ≤ n }.
We define the complexity ι〈D,S,R〉 of the DT problem as ι(rc〈D,S,R〉).

Example 13. Consider the TRS R of Ex. 3 and let D = DT (R) = {(1), . . . , (8)}.
For t ∈ TB with |t| = n, the maximal chain tree for t] has approximately n2

nodes, i.e., rc〈D,D,R〉(n)∈O(n2). Thus, 〈D,D,R〉’s complexity is ι〈D,D,R〉=Pol2.

Thm. 14 shows that to analyze the complexity of a TRS R, it suffices to ana-
lyze the complexity of its canonical DT problem: By Def. 2, ιR is the complexity
of the runtime complexity function rcR which maps n to the length of the longest
innermost rewrite sequence starting with a basic term of at most size n. By Thm.
10, this length is less than or equal to the size Cplx 〈DT (R),DT (R),R〉(t

]) of the max-
imal chain tree for any basic term t of at most size n, i.e., to rc〈DT (R),DT (R),R〉(n).

Theorem 14 (Upper bound for TRSs via Canonical DT Problems).
Let R be a TRS and let 〈D,D,R〉 be the corresponding canonical DT problem.
Then we have ιR v ι〈D,D,R〉 and if R is confluent, we even have ιR = ι〈D,D,R〉.

Now we can introduce our notion of processors which is analogous to the
“DP processors” for termination [10, 11]. They transform a DT problem P to a
pair (c, P ′) of an asymptotic complexity c ∈ C and a DT problem P ′, such that
P ’s complexity is bounded by the maximum of c and of the complexity of P ′.

Definition 15 (Processor, ⊕). A DT processor Proc is a function Proc(P)
= (c, P ′) mapping any DT problem P to a complexity c ∈ C and a DT problem
P ′. A processor is sound if ιP v c⊕ ιP ′ . Here, “⊕” is the “maximum” function
on C, i.e., for any c, d ∈ C, we define c⊕ d = d if c v d and c⊕ d = c otherwise.

To analyze the complexity ιR of a TRS R, we start with the canonical DT
problem P0 = 〈DT (R), DT (R),R〉. Then we apply a sound processor to P0

which yields a result (c1, P1). Afterwards, we apply another (possibly different)

5

sound processor to P1 which yields (c2, P2), etc. This is repeated until we obtain
a solved DT problem (whose complexity is obviously Pol0).

Definition 16 (Proof Chain, Solved DT Problem). We call a DT problem

P = 〈D,S,R〉 solved, if S = ∅. A proof chain7 is a finite sequence P0
c1
; P1

c2
;

. . .
ck
; Pk ending with a solved DT problem Pk, such that for all 0 ≤ i < k there

exists a sound processor Proci with Proci(Pi) = (ci+1, Pi+1).

By Def. 15 and 16, for every Pi in a proof chain, ci+1 ⊕ . . .⊕ ck is an upper
bound for its complexity ιPi . Here, the empty sum (for i = k) is defined as Pol0.

Theorem 17 (Approximating Complexity by Proof Chain). Let P0
c1
;

P1
c2
; . . .

ck
; Pk be a proof chain. Then ιP0

v c1 ⊕ . . .⊕ ck.

Thm. 14 and 17 now imply that our approach for complexity analysis is correct.

Corollary 18 (Correctness of Approach). If P0 is the canonical DT problem

for a TRS R and P0
c1
; . . .

ck
; Pk is a proof chain, then ιR v c1 ⊕ . . .⊕ ck.

5 DT Processors

In this section, we present several processors to simplify DT problems automati-
cally. To this end, we adapt the processors of the DP framework for termination.

The usable rules processor (Sect. 5.1) simplifies a problem 〈D,S,R〉 by delet-
ing rules from R. The reduction pair processor (Sect. 5.2) removes DTs from S,
based on term orders. In Sect. 5.3 we introduce the dependency graph, on which
the leaf removal and knowledge propagation processor (Sect. 5.4) are based. Fi-
nally, Sect. 5.5 adapts processors based on transformations like narrowing.

5.1 Usable Rules Processor

As in termination analysis (and in [13]), we can restrict ourselves to those rewrite
rules that can be used to reduce right-hand sides of DTs (when instantiating their
variables with normal forms). This leads to the notion of usable rules.

Definition 19 (Usable Rules UR [1]). For a TRS R and any symbol f , let
RlsR(f) = {`→ r | root(`) = f}. For any term t, UR(t) is the smallest set with

• UR(x) = ∅ if x ∈ V and
• UR(f(t1, . . . , tn)) = RlsR(f) ∪

⋃
`→r∈RlsR(f) UR(r) ∪

⋃
1≤i≤n UR(ti)

For any set D of DTs, we define UR(D) =
⋃
s→t∈D UR(t).

So forR and DT (R) in Ex. 3 and 5, UR(DT (R)) contains just the gt- and the
p-rules. The following processor removes non-usable rules from DT problems.8

Theorem 20 (Usable Rules Processor). Let 〈D,S,R〉 be a DT problem.

7 Of course, one could also define DT processors that transform a DT problem P into
a complexity c and a set {P ′1, . . . , P ′n} such that ιP v c ⊕ ιP ′1 ⊕ . . . ⊕ ιP ′n . Then
instead of a proof chain one would obtain a proof tree.

8 While Def. 19 is the most basic definition of usable rules, the processor of Thm. 20 can
also be used with more sophisticated definitions of “usable rules” (e.g., as in [11]).

6

Then the following processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D,S,UR(D)〉).
So when applying the usable rules processor on the canonical DT problem

〈D,D,R〉 ofR from Ex. 3, we obtain 〈D,D,R1〉 whereR1 are the gt- and p-rules.

5.2 Reduction Pair Processor

The use of orders is one of the most important methods for termination or
complexity analysis. In the most basic approach, one tries to find a well-founded
order � such that every reduction step (strictly) decreases w.r.t. �. This proves
termination and most reduction orders also imply some complexity bound, cf.
e.g. [7,15]. However, direct applications of orders have two main drawbacks: The
obtained bounds are often far too high to be useful and there are many TRSs
that cannot be oriented strictly with standard orders amenable to automation.

Therefore, the reduction pair processor of the DP framework only requires
a strict decrease (w.r.t. �) for at least one DP, while for all other DPs and
rules, a weak decrease (w.r.t. %) suffices. Then the strictly decreasing DPs can
be deleted. Afterwards one can use other orders (or termination techniques)
to solve the remaining DP problem. To adapt the reduction pair processor for
complexity analysis, we have to restrict ourselves to Com-monotonic orders.9

Definition 21 (Reduction Pair). A reduction pair (%,�) consists of a stable
monotonic quasi-order % and a stable well-founded order � which are compatible
(i.e., %◦�◦% ⊆ �). An order � is Com-monotonic iff Comn(s]1, ..., s

]
i , ..., s

]
n) �

Comn(s]1, ..., t
], ..., s]n) for all n ∈ N, all 1 ≤ i ≤ n, and all s]1, . . . , s

]
n, t

] ∈ T]
with s]i � t]. A reduction pair (%,�) is Com-monotonic iff � is Com-monotonic.

For a DT problem (D,S,R), we orient D ∪R by % or �. But in contrast to
the processor for termination, if a DT is oriented strictly, we may not remove it
from D, but only from S. So the DT is not counted anymore for complexity, but
it may still be used in reductions.10 We will improve this later in Sect. 5.4.

Example 22. This TRS R shows why DTs may not be removed from D.

f(0)→ 0 f(s(x))→ f(id(x)) id(0)→ 0 id(s(x))→ s(id(x))

Let D=DT (R) = {f](0)→ Com0, f
](s(x))→ Com2(f](id(x)), id](x)), id](0)→

Com0, id](s(x)) → Com1(id](x))}, where UR(D) are just the id-rules. For the
DT problem 〈D,S,UR(D)〉 with S = D, there is a linear polynomial interpre-
tation [·] that orients the first two DTs strictly and the remaining DTs and
usable rules weakly: [0] = 0, [s](x) = x+ 1, [id](x) = x, [f]](x) = x+ 1, [id]](x) =

9 In [13] “Com-monotonic” is called “safe”. Note that our reduction pair processor is
much closer to the original processor of the DP framework than [13]. In the main
theorem of [13], all (weak) DPs have to be oriented strictly in one go. Moreover, one
even has to orient the (usable) rules strictly. Finally, one is either restricted to non-
duplicating TRSs or one has to use orderings � that are monotonic on all symbols.

10 A related idea is used in [22]. However, [22] focuses on derivational complexity instead
of (innermost) runtime complexity, and it operates directly on TRSs and not on
DPs or DTs. Therefore, [22] has to impose stronger restrictions (it requires � to be
monotonic on all symbols) and it does not use other DP- resp. DT-based processors.

7

0, [Com0] = 0, [Com1](x) = x, [Com2](x, y) = x + y. If one would remove the
first two DTs from D, there is another linear polynomial interpretation that
orients the remaining DTs strictly (e.g., by [id]](x) = x + 1). Then, one would
falsely conclude that the whole TRS has linear runtime complexity.

Hence, the first two DTs should only be removed from S, not from D. This
results in 〈D,S ′,UR(D)〉 where S ′ consists of the last two DTs. These DTs can
occur quadratically often in reductions with D ∪ UR(D). Hence, when trying to
orient S ′ strictly and the remaining DTs and usable rules weakly, we have to
use a quadratic polynomial interpretation (e.g., [0] = 0, [s](x) = x+ 2, [id](x) =
x, [f]](x) = x2, [id]](x) = x + 1, [Com0] = 0, [Com1](x) = x, [Com2](x, y) =
x+ y). Hence, now we (correctly) conclude that the TRS has quadratic runtime

complexity (indeed, dl(f(sn(0)), i→R) = (n+1)·(n+2)
2).

So when applying the reduction pair processor to 〈D,S,R〉, we obtain (c,
〈D,S \ D�,R〉). Here, D� are the strictly decreasing DTs from D and c is an
upper bound for the number of D�-steps in innermost reductions with D ∪R.

Theorem 23 (Reduction Pair Processor). Let P = 〈D,S,R〉 be a DT prob-
lem and (%,�) be a Com-monotonic reduction pair. Let D ⊆ % ∪ �, R ⊆ %,
and c w ι(rc�) for the function rc�(n) = sup{ dl(t],�) | t ∈ TB , |t| ≤ n}.11 Then
the following processor is sound: Proc(〈D,S,R〉) = (c, 〈D, S \ D�, R〉).

To automate Thm. 23, we need reduction pairs where an upper bound c for
ι(rc�) can be computed easily. This holds for reduction pairs based on polynomial
interpretations with coefficients from N (which are well suited for automation).
For Com-monotonicity, we restrict ourselves to complexity polynomial interpre-
tations [·] where [Comn](x1, . . . , xn) = x1 + . . . + xn for all n ∈ N. This is the
smallest polynomial which is monotonic in x1, . . . , xn. As Comn only occurs on
right-hand sides of �- and %-inequalities, [Comn] should be as small as possible.

Moreover, a complexity polynomial interpretation interprets constructor sym-
bols f ∈ Σ \Σd by polynomials [f](x1, . . . , xn) of the form a1x1 + . . .+anxn + b
where b ∈ N and ai ∈ {0, 1}. This ensures that the mapping from constructor
ground terms t ∈ T (Σ\Σd,∅) to their interpretations is in O(|t|), cf. [7,15]. Note
that the interpretations in Ex. 22 were complexity polynomial interpretations.

Thm. 24 shows how such interpretations can be used12 for the processor of
Thm. 23. Here, as an upper bound c for ι(rc�), one can simply take Polm, where
m is the maximal degree of the polynomials in the interpretation.

Theorem 24 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let P = 〈D,S,R〉 be a DT problem and let % and � be induced by a

11 As noted by [19], this can be weakened by replacing “dl(t],�)” with dl(t],�∩ i→D/R),
where→D/R=→∗R ◦ →D ◦ →∗R and i→D/R is the restriction of→D/R where in each
rewrite step with→R or→D, the arguments of the redex must be in (D∪R)-normal
form, cf. [3]. Such a weakening is required to use reduction pairs based on path orders
where a term t] may start �-decreasing sequences of arbitrary (finite) length.

12 Alternatively, our reduction pair processor can also use matrix interpretations [8,16,
18,20,21], polynomial path orders (POP∗ [3]), etc. For POP∗, we would extend C by a
complexity Pol∗ for polytime computability, where Poln < Pol∗ <∞ for all n ∈ N.

8

complexity polynomial interpretation [·]. Let m ∈ N be the maximal degree of all
polynomials [f]], for all f] with f ∈ Σd. Let D ⊆ % ∪ � and R ⊆ %. Then the
following processor is sound: Proc(〈D,S,R〉) = (Polm, 〈D, S \ D�, R〉).

Example 25. This TRS [1] illustrates Thm. 24, where q(x, y, y) computes bxy c.

q(0, s(y), s(z))→0 q(s(x), s(y), z)→q(x, y, z) q(x, 0, s(z))→ s(q(x, s(z), s(z)))

The dependency tuples D of this TRS are

q](0, s(y), s(z))→ Com0 (9) q](s(x), s(y), z)→ Com1(q](x, y, z)) (10)

q](x, 0, s(z))→ Com1(q](x, s(z), s(z))) (11)

As the usable rules are empty, Thm. 20 transforms the canonical DT prob-
lem to 〈D,D,∅〉. Consider the complexity polynomial interpretation [0] = 0,
[s](x) = x+ 1, [q]](x, y, z) = x+ 1, [Com0] = 0, [Com1](x) = x. With the corre-
sponding reduction pair, the DTs (9) and (10) are strictly decreasing and (11)
is weakly decreasing. Moreover, the degree of [q]] is 1. Hence, the reduction pair
processor returns (Pol1, 〈D, {(11)},∅〉). Unfortunately, no reduction pair based
on complexity polynomial interpretations orients (11) strictly and both (9) and
(10) weakly. So for the moment we cannot simplify this problem further.

5.3 Dependency Graph Processors

As in the DP framework for termination, it is useful to have a finite representa-
tion of (a superset of) all possible chain trees.

Definition 26 (Dependency Graph). Let D be a set of DTs and R a TRS.
The (D,R)-dependency graph is the directed graph whose nodes are the DTs in
D and there is an edge from s→ t to u→ v in the dependency graph iff there is
a chain tree with an edge from a node (s→ t | σ1) to a node (u→ v | σ2).

Every (D,R)-chain corresponds to a path in the (D,R)-dependency graph.
While dependency graphs are not computable in general, there are several tech-
niques to compute over-approximations of dependency graphs for termination,
cf. e.g. [1]. These techniques can also be applied for (D,R)-dependency graphs.

Example 27. For the TRS R from Ex. 3, we obtain the following (D,R1)-
dependency graph, where D = DT (R) and R1 are the gt- and p-rules.

m](x, y)→ Com2(if](gt(x, y), x, y), gt](x, y)) (1)

if](false, x, y)→ Com0 (3)if](true, x, y)→ Com2(m](p(x), y), p](x)) (2)

p](0)→ Com0 (4) p](s(n))→ Com0 (5)

gt](0, k)→ Com0 (6)

gt](s(n), 0)→ Com0 (7)

gt](s(n), s(k))→ Com1(gt](n, k)) (8)

9

For termination analysis, one can regard each cycle of the graph separately
and ignore nodes that are not on cycles. This is not possible for complexity anal-
ysis: If one regards the DTs D′ = {(1), (2)} and D′′ = {(8)} on the two cycles of
the dependency graph separately, then both resulting DT problems 〈D′,D′,R1〉
and 〈D′′,D′′,R1〉 have linear complexity. However, this does not allow any con-
clusions on the complexity of 〈D,D,R1〉 (which is quadratic). Nevertheless, it is
possible to remove DTs s → t that are leaves (i.e., s → t has no successors in
the dependency graph). This yields 〈D1,D1,R1〉, where D1 = {(1), (2), (8)}.

Theorem 28 (Leaf Removal Processor). Let 〈D,S,R〉 be a DT problem
and let s→ t ∈ D be a leaf in the (D,R)-dependency graph. Then the following
processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D \ {s→ t},S \ {s→ t},R〉).

5.4 Knowledge Propagation

In the DP framework for termination, the reduction pair processor removes
“strictly decreasing” DPs. While this is unsound for complexity analysis (cf.
Ex. 22), we now show that by an appropriate extension of DT problems, one
can obtain a similar processor also for complexity analysis.

Lemma 29 shows that we can estimate the complexity of a DT if we know
the complexity of all its predecessors in the dependency graph.

Lemma 29 (Complexity Bounded by Predecessors). Let 〈D,S,R〉 be a
DT problem and s → t ∈ D. Let Pre(s → t) ⊆ D be the predecessors of s → t,
i.e., Pre(s → t) contains all DTs u → v where there is an edge from u → v to
s→ t in the (D,R)-dependency graph. Then ι〈D,{s→t},R〉 v ι〈D,Pre(s→t),R〉.

q](s(x), s(y), z)→ Com1(q](x, y, z)) (10)

q](x, 0, s(z))→ Com1(q](x, s(z), s(z))) (11)

Example 30. Consider the TRS
from Ex. 25. By usable rules
and reduction pairs, we ob-
tained 〈D, {(11)}, ∅〉 for D =
{(9), (10), (11)}. The leaf re-
moval processor yields 〈D′, {(11)}, ∅〉 with D′ = {(10), (11)}. Consider the
the (D′,∅)-dependency graph above. We have ι〈D′, {(11)},∅〉 v ι〈D′, {(10)},∅〉 by
Lemma 29, since (10) is the only predecessor of (11). Thus, the complexity of
〈D′, {(11)},∅〉 does not matter for the overall complexity, if we can guarantee
that we have already taken the complexity of 〈D′, {(10)},∅〉 into account.

Therefore, we now extend the definition of DT problems by a set K of DTs
with “known” complexity, i.e., the complexity of the DTs in K has already been
taken into account. So a processor only needs to estimate the complexity of a
set of DTs correctly if their complexity is higher than the complexity of the DTs
in K. Otherwise, the processor may return an arbitrary result. To this end, we
introduce a “subtraction” operation � on complexities from C.

Definition 31 (Extended DT Problems, �). For c, d,∈ C, let c � d = c if
d < c and c�d = Pol0 if c v d. Let R be a TRS, D a set of DTs, and S,K ⊆ D.
Then 〈D,S,K,R〉 is an extended DT problem and 〈DT (R), DT (R),∅,R〉 is the
canonical extended DT problem for R. We define the complexity of an extended

10

DT problem to be γ〈D,S,K,R〉 = ι〈D,S,R〉 � ι〈D,K,R〉 and also use γ instead of
ι in the soundness condition for processors. So on extended DT problems, a
processor with Proc(P) = (c, P ′) is sound if γP v c ⊕ γP ′ . An extended DT
problem 〈D,S,K,R〉 is solved if S = ∅.

So for K = ∅, the definition of “complexity” for extended DT problems is
equivalent to complexity for ordinary DT problems, i.e., γ〈D,S,∅,R〉 = ι〈D,S,R〉.
Cor. 32 shows that our approach is still correct for extended DT problems.

Corollary 32 (Correctness). If P0 is the canonical extended DT problem for

a TRS R and P0
c1
; . . .

ck
; Pk is a proof chain, then ιR = γP0

v c1 ⊕ . . .⊕ ck.

Now we introduce a processor which makes use of K. It moves a DT s → t
from S to K whenever the complexity of all predecessors of s→ t in the depen-
dency graph has already been taken into account.13

Theorem 33 (Knowledge Propagation Processor). Let 〈D,S,K,R〉 be an
extended DT problem, s→ t ∈ S, and Pre(s→ t) ⊆ K. Then the following pro-
cessor is sound: Proc(〈D,S,K,R〉) = (Pol0, 〈D, S\{s→ t}, K∪{s→ t}, R〉).

Before we can illustrate this processor, we need to adapt the previous proces-
sors to extended DT problems. The adaption of the usable rules and leaf removal
processors is straightforward. But now the reduction pair processor does not only
delete DTs from S, but it can also move them to K. The reason is that the com-
plexity of these DTs is bounded by the complexity value c ∈ C returned by
the processor. (Of course, the special case of the reduction pair processor with
polynomial interpretations of Thm. 24 can be adapted analogously.)

Theorem 34 (Processors for Extended DT Problems). Let P = 〈D,S,
K,R〉 be an extended DT problem. Then the following processors are sound.

• The usable rules processor: Proc(P) = (Pol0, 〈D,S,K,UR(D)〉).
• The leaf removal processor Proc(P) = (Pol0, 〈D \ {s → t},S \ {s → t},
K \ {s→ t},R〉), if s→ t is a leaf in the (D,R)-dependency graph.
• The reduction pair processor: Proc(P) = (c, 〈D, S \ D�, K ∪ D�, R〉),

if (%,�) is a Com-monotonic reduction pair, D ⊆ % ∪ �, R ⊆ %, and
c w ι(rc�) for the function rc�(n) = sup{ dl(t],�) | t ∈ TB , |t| ≤ n}.

Example 35. Reconsider the TRS R for division from Ex. 25. Starting with its
canonical extended DT problem, we now obtain the following proof chain.

〈 {(9), (10), (11)}, {(9), (10), (11)}, ∅, R〉
Pol0
; 〈 {(10), (11)}, {(10), (11)}, ∅, R〉 (leaf removal)
Pol0
; 〈 {(10), (11)}, {(10), (11)}, ∅, ∅〉 (usable rules)
Pol1
; 〈 {(10), (11)}, {(11)}, {(10)}, ∅〉 (reduction pair)
Pol0
; 〈 {(10), (11)}, ∅, {(10), (11)}, ∅〉 (knowledge propag.)

For the last step we use Pre((11)) = {(10)}, cf. Ex. 30. The last DT problem is
solved. Thus, ιR v Pol0⊕Pol0⊕Pol1⊕Pol0 = Pol1, i.e.,R has linear complexity.

13 In particular, this means that nodes without predecessors (i.e., “roots” of the de-
pendency graph that are not in any cycle) can always be moved from S to K.

11

5.5 Transformation Processors

To increase power, the DP framework for termination analysis has several pro-
cessors which transform a DP into new ones (by “narrowing”, “rewriting”, “in-
stantiation”, or “forward instantiation”) [11]. We now show how to adapt such
processors for complexity analysis. For reasons of space, we only present the
narrowing processor (the other processors can be adapted in a similar way).

For a DT problem 〈D,S,K,R〉, let s→ t ∈ D with t = Comn(t1, ..., ti, ..., tn).
If there exists a (variable-renamed) u→ v ∈ D where ti and u have an mgu µ and
both sµ and uµ are in R-normal form, then we call µ a narrowing substitution
of ti and define the corresponding narrowing result to be tiµ.

Moreover, if s → t has a successor u → v in the (D,R)-dependency graph
where ti and u have no such mgu, then we obtain additional narrowing substitu-
tions and narrowing results for ti. The reason is that in any possible reduction
tiσ

i→∗R uτ in a chain, the term tiσ must be rewritten at least one step before it
reaches uτ . The idea of the narrowing processor is to already perform this first
reduction step directly on the DT s → t. Whenever a subterm ti|π /∈ V of ti
unifies with the left-hand side of a (variable-renamed) rule ` → r ∈ R using an
mgu µ where sµ is in R-normal form, then µ is a narrowing substitution of ti
and the corresponding narrowing result is w = ti[r]πµ.

If µ1, . . . , µd are all narrowing substitutions of ti with the corresponding nar-
rowing results w1, . . . , wd, then s→ t can be replaced by sµj → Comn(t1µj , . . . ,
ti−1µj , wj , ti+1µj , . . . , tnµj) for all 1 ≤ j ≤ d.

However, there could be a tk (with k 6= i) which was involved in a chain
(i.e., tkσ

i→∗R uτ for some u→ v ∈ D and some σ, τ), but this chain is no longer
possible when instantiating tk to tkµ1, . . . , tkµd. We say that tk is captured by µ1,
. . . , µd if for each narrowing substitution ρ of tk, there is a µj that is more gene-
ral (i.e., ρ = µj ρ

′ for some substitution ρ′). The narrowing processor has to add
another DT s → Comm(tk1 , . . . , tkm) where tk1 , . . . , tkm are all terms from t1,
. . . , tn which are not captured by the narrowing substitutions µ1, . . . , µd of ti.

This leads to the following processor. For any sets D,M of DTs, D[s→ t /M]
denotes the result of replacing s → t by the DTs in M. So if s→ t ∈ D, then
D[s→ t /M] = (DT \ {s→ t}) ∪M and otherwise, D[s→ t /M] = D.

Theorem 36 (Narrowing Processor). Let P = 〈D,S,K,R〉 be an extended
DT problem and let s→ t ∈ D with t = Comn(t1, . . . , ti, . . . , tn). Let µ1, . . . , µd
be the narrowing substitutions of ti with the corresponding narrowing results
w1, . . . , wd, where d ≥ 0. Let tk1 , . . . , tkm be the terms from t1, . . . , tn that are
not captured by µ1, . . . , µd, where k1, . . . , km are pairwise different. We define

M = {sµj → Comn(t1µj , . . . , ti−1µj , wj , ti+1µj , . . . , tnµj) | 1 ≤ j ≤ d}
∪ {s → Comm(tk1 , . . . , tkm)}.

Then the following processor is sound: Proc(P) = (Pol0, 〈D′,S ′,K′,R〉), where
D′ = D[s→ t /M] and S ′ = S[s→ t /M]. K′ results from K by removing s→ t
and all DTs that are reachable from s→ t in the (D,R)-dependency graph.14

14 We cannot define K′ = K[s→ t / M], because the narrowing step performed on
s→ t does not necessarily correspond to an innermost reduction. Hence, there can

12

Example 37. To illustrate the narrowing processor, consider the following TRS.

f(c(n, x))→ c(f(g(c(n, x))), f(h(c(n, x)))) g(c(0, x))→ x h(c(1, x))→ x

So f operates on “lists” of 0s and 1s, where g removes a leading 0 and h removes a
leading 1. Since g’s and h’s applicability “exclude” each other, the TRS has linear
(and not exponential) complexity. The leaf removal and usable rules processors
yield the problem 〈 {(12)}, {(12)}, ∅, {g(c(0, x))→ x, h(c(1, x))→ x} 〉 with

f](c(n, x))→ Com4(f](g(c(n, x))), g](c(n, x)), f](h(c(n, x))), h](c(n, x))). (12)

The only narrowing substitution of t1 = f](g(c(n, x))) is [n/0] and the correspon-
ding narrowing result is f](x). However, t3 = f](h(c(n, x))) is not captured by
the substitution [n/0], since [n/0] is not more general than t3’s narrowing sub-
stitution [n/1]. Hence, the DT (12) is replaced by the following two new DTs:

f](c(0, x))→ Com4(f](x), g](c(0, x)), f](h(c(0, x))), h](c(0, x))) (13)

f](c(n, x))→ Com1(f](h(c(n, x)))) (14)

Another application of the narrowing processor replaces (14) by f](c(1, x)) →
Com1(f](x)).15 Now ιR v Pol1 is easy to show by the reduction pair processor.

Example 38. Reconsider the TRS of Ex. 3. The canonical extended DT problem
is transformed to 〈D1,D1,∅,R1〉, where D1 = {(1), (2), (8)} and R1 are the
gt- and p-rules, cf. Ex. 27. In m](x, y) → Com2(if](gt(x, y), x, y), gt](x, y)) (1),
one can narrow t1 = if](gt(x, y), x, y). Its narrowing substitutions are [x/0, y/k],
[x/s(n), y/0], [x/s(n), y/s(k)]. Note that t2 = gt](x, y) is captured, as its only
narrowing substitution is [x/s(n), y/s(k)]. So (1) can be replaced by

m](0, k)→ Com2(if](false, 0, k), gt](0, k)) (15)

m](s(n), 0)→ Com2(if](true, s(n), 0), gt](s(n), 0)) (16)

m](s(n), s(k))→ Com2(if](gt(n, k), s(n), s(k)), gt](s(n), s(k))) (17)

m](x, y)→ Com0 (18)

The leaf removal processor deletes (15), (18) and yields 〈D2,D2,∅,R1〉 with D2 =
{(16), (17), (2), (8)}. We replace if](true, x, y)→ Com2(m](p(x), y), p](x)) (2) by

if](true, 0, y)→ Com2(m](0, y), p](0)) (19)

if](true, s(n), y)→ Com2(m](n, y), p](s(n))) (20)

by the narrowing processor. The leaf removal processor deletes (19) and the
usable rules processor removes the p-rules from R1. This yields 〈D3,D3,∅,R2〉,

be (D′,R)-chains that correspond to non-innermost reductions with D∪R. So there
may exist terms whose maximal (D′,R)-chain tree is larger than their maximal
(D,R)-chain tree and thus, ι〈D′,K[s→t/M],R〉 w ι〈D,K,R〉. But we need ι〈D′,K′,R〉 v
ι〈D,K,R〉 in order to guarantee the soundness of the processor, i.e., to ensure that
γ〈D,S,K,R〉 = ι〈D,S,R〉 � ι〈D,K,R〉 v ι〈D′,S′,R〉 � ι〈D′,K′,R〉 = γ〈D′,S′,K′,R〉.

15 One can also simplify (13) further by narrowing. Its subterm g](c(0, x)) has no
narrowing substitutions. This (empty) set of narrowing substitutions captures
f](h(c(0, x))) and h](c(0, x)) which have no narrowing substitutions either. Since
f](x) is not captured, (13) can be transformed into f](c(0, x))→ Com1(f](x)).

13

where D3 = {(16), (17), (20), (8)} and R2 are the gt-rules. By the polynomial in-
terpretation [0] = [true] = [false] = [p]](x) = 0, [s](x) = x+2, [gt](x, y) = [gt]](x,
y) = x, [m]](x, y) = (x+ 1)2, [if]](x, y, z) = y2, all DTs in D3 are strictly decrea-
sing and all rules in R2 are weakly decreasing. So the reduction pair processor

yields 〈D3,D3,∅,R2〉
Pol2
; 〈D3,∅,D3,R2〉. As this DT problem is solved, we

obtain ιR v Pol0 ⊕ . . .⊕ Pol0 ⊕ Pol2 = Pol2, i.e., R has quadratic complexity.

6 Evaluation and Conclusion

We presented a new technique for (innermost) runtime complexity analysis by
adapting the termination techniques of the DP framework. To this end, we in-
troduced several processors to simplify “DT problems”, which gives rise to a
flexible and modular framework for automated complexity proofs. Thus, recent
advances in termination analysis can now also be used for complexity analysis.

To evaluate our contributions, we implemented them in the termination pro-
ver AProVE and compared it with the complexity tools CaT 1.5 [22] and TCT 1.6
[2]. We ran the tools on 1323 TRSs from the Termination Problem Data Base
used in the International Termination Competition 2010.16 As in the competi-
tion, each tool had a timeout of 60 seconds for each example. The left half of the
table compares CaT and AProVE. For instance, the first row means that AProVE
showed constant complexity for 209 examples. On those examples, CaT proved
linear complexity in 182 cases and failed in 27 cases. So in the light gray part of
the table, AProVE gave more precise results than CaT. In the medium gray part,
both tools obtained equal results. In the dark gray part, CaT was more precise
than AProVE. Similarly, the right half of the table compares TCT and AProVE.

CaT TCT
Pol0 Pol1 Pol2 Pol3 no result

∑
Pol0 Pol1 Pol2 Pol3 no result

∑

A
P
ro
V
E

Pol0 - 182 - - 27 209 10 157 - - 42 209
Pol1 - 187 7 - 76 270 - 152 1 - 117 270
Pol2 - 32 2 - 83 117 - 35 - - 82 117
Pol3 - 6 - - 16 22 - 5 - - 17 22

no result - 27 3 1 674 705 - 22 3 - 680 705∑
0 434 12 1 876 1323 10 371 4 0 938 1323

So AProVE showed polynomial runtime for 618 of the 1323 examples (47 %).
(Note that the collection also contains many examples whose complexity is not
polynomial.) In contrast, CaT resp. TCT proved polynomial runtime for 447
(33 %) resp. 385 (29 %) examples. Even a “combined tool” of CaT and TCT
(which always returns the better result of these two tools) would only show
polynomial runtime for 464 examples (35 %). Hence, our contributions represent
a significant advance. This also confirms the results of the International Termi-
nation Competition 2010, where AProVE won the category of innermost runtime
complexity analysis. AProVE also succeeds on Ex. 3, 25, and 37, whereas CaT
and TCT fail. (Ex. 22 can be analyzed by all three tools.) For details on our ex-
periments and to run our implementation in AProVE via a web interface, we refer

16 See http://www.termination-portal.org/wiki/Termination_Competition.

14

to http://aprove.informatik.rwth-aachen.de/eval/RuntimeComplexity/.

Acknowledgments. We are grateful to the CaT and the TCT team for their support

with the experiments and to G. Moser and H. Zankl for many helpful comments.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. M. Avanzini, G. Moser, and A. Schnabl. Automated implicit computational com-
plexity analysis. In Proc. IJCAR ’08, LNAI 5195, pages 132–138, 2008.

3. M. Avanzini and G. Moser. Dependency pairs and polynomial path orders. In
Proc. RTA ’09, LNCS 5595, pages 48–62, 2009.

4. M. Avanzini and G. Moser. Closing the gap between runtime complexity and
polytime computability. In Proc. RTA ’10, LIPIcs 6, pages 33–48, 2010.

5. M. Avanzini and G. Moser. Complexity analysis by graph rewriting. In Proc.
FLOPS ’10, LNCS 6009, pages 257–271, 2010.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge U. Pr., 1998.
7. G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with polynomial

interpretation termination proof. J. Functional Programming, 11(1):33–53, 2001.
8. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving

termination of term rewriting. J. Automated Reasoning, 40(2-3):195–220, 2008.
9. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that

certify termination of left-linear term rewriting systems. Information and Compu-
tation, 205(4):512–534, 2007.

10. J. Giesl, R. Thiemann, P. Schneider-Kamp. The DP framework: Combining tech-
niques for automated termination proofs. LPAR ’04, LNAI 3452, p. 301-331, 2005.

11. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

12. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

13. N. Hirokawa and G. Moser. Automated complexity analysis based on the depen-
dency pair method. In Proc. IJCAR ’08, LNAI 5195, pages 364–379, 2008.

14. N. Hirokawa and G. Moser. Complexity, graphs, and the dependency pair method.
In Proc. LPAR ’08, LNAI 5330, pages 652–666, 2008.

15. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In Proc. RTA ’89, LNCS 355, pages 167–177, 1989.

16. A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term
rewriting. Acta Cybernetica, 19(2):357–392, 2009.

17. J.-Y. Marion and R. Péchoux. Characterizations of polynomial complexity classes
with a better intensionality. In Proc. PPDP ’08, pages 79–88. ACM Press, 2008.

18. G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting
based on matrix and context dependent interpretations. In Proc. FSTTCS ’08,
LIPIcs 2, pages 304–315, 2008.

19. G. Moser. Personal communication, 2010.
20. F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for

polynomial derivational complexity of term rewriting. In Proc. LPAR ’10, LNCS
6397, pages 550–564, 2010.

21. J. Waldmann. Polynomially bounded matrix interpretations. In Proc. RTA ’10,
LIPIcs 6, pages 357–372, 2010.

22. H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In
Proc. RTA ’10, LIPIcs 6, pages 385–400, 2010.

15

A Proofs

We first state a lemma with useful observations on ⊕, �, and ι〈D,S,R〉, which
will be used throughout the proofs. Lemma 39 (a) and (b) shows that ⊕ and �
correspond to the addition and subtraction of functions (where for two functions
f, g : N → N, we have (f + g)(n) = f(n) + g(n) and (f − g)(n) = max(f(n) −
g(n), 0)).

Moreover, the lemma shows the connection between ι〈D,S,R〉 and the opera-
tions ⊕ and �. For instance, for the m-TRS R from Ex. 3 and D = DT (R), we
have ι〈D,D,R〉 = Pol2. In Ex. 9 we also regarded the set S which contains all DTs
except (6) – (8). We have rc〈D,S,R〉(n) ∈ O(n) and thus, ι〈D,S,R〉 = Pol1. On

the other hand, if one counts just the gt]-DTs (6) – (8), then one again obtains
rc〈D,D\S,R〉(n) ∈ O(n2) and thus, ι〈D,D\S,R〉 = Pol2. So in particular, we have
ι〈D,S,R〉 v ι〈D,D,R〉 and ι〈D,D,R〉 = ι〈D,S,R〉⊕ ι〈D,D\S,R〉. These observations are
generalized in Lemma 39 (g) and (h).

Lemma 39 (Properties of ⊕, �, and ι〈D,S,R〉). Let f and g be functions
from N to N ∪ {∞} and let c, d, e ∈ C.

(a) ι(f)⊕ ι(g) = ι(f + g)
(b) ι(f) � ι(g) v ι(f − g)
(c) ⊕ is associative and commutative
(d) c� d v e iff c v d⊕ e
(e) c� d w e does not imply c w d⊕ e
(f) c w d⊕ e does not imply c� d w e
(g) If S1 ⊆ S2 then ι〈D,S1,R〉 v ι〈D,S2,R〉
(h) For any S1,S2 ⊆ D, we have ι〈D,S1,R〉 ⊕ ι〈D,S2,R〉 = ι〈D,S1∪S2,R〉
(i) For any S1,S2 ⊆ D, we have ι〈D,S1,R〉 � ι〈D,S2,R〉 v ι〈D,S1\S2,R〉

Proof. For (a), ι(g) < ι(f) implies ι(f + g) = ι(f) and ι(f) v ι(g) implies
ι(f + g) = ι(g).

For (b), first let ι(f) v ι(g). Then ι(f)�ι(g) = Pol0 v ι(f−g). If ι(g) < ι(f)
then ι(f) � ι(g) = ι(f) = ι(f − g).

The claim in (c) is obvious, since the “maximum” function on C is associative
and commutative.

For (d), if c v d, we have both c�d = Pol0 v e and c v d v d⊕e. Otherwise,
let d < c. If d v e, we have c� d = c v e iff c v d⊕ e = e. If e < d, then d < c
implies that c� d = c v e is false. Similarly, then c v d⊕ e = d is also false.

For (e), let c = e = Pol0 and d = Pol1. Then we have c� d = Pol0 � Pol1 =
Pol0 w Pol0 = e, but c = Pol0 6w Pol1 = Pol1 ⊕ Pol0 = d⊕ e.

For (f), let c = d = e = Pol1. Then we have c = Pol1 w Pol1 ⊕Pol1 = d⊕ e,
but c� d = Pol1 � Pol1 = Pol0 6w Pol1 = e.

For (g), S1 ⊆ S2 implies that Cplx 〈D,S1,R〉(t
]) ≤ Cplx 〈D,S2,R〉(t

]) for any

t] ∈ T]. This implies rc〈D,S1,R〉(n) ≤ rc〈D,S2,R〉(n) for all n ∈ N and thus,
ι〈D,S1,R〉 = ι(rc〈D,S1,R〉) v ι(rc〈D,S2,R〉) = ι〈D,S2,R〉.

For (h), consider an arbitrary t] ∈ T]. Let m be the maximal number of nodes
from S1 ∪S2 occurring in any (D,R)-chain tree for t], i.e., Cplx 〈D,S1∪S2,R〉(t

]) =

16

m. Similarly, let m1 and m2 be the maximal numbers of nodes from S1 resp.
from S2 occurring in any (D,R)-chain trees for t], i.e., Cplx 〈D,S1,R〉(t

]) = m1 and

Cplx 〈D,S2,R〉(t
]) = m2. When extending “≤” and “+” to N ∪ {∞}, we clearly

have sup{m1,m2} ≤ m ≤ m1 + m2, i.e., sup{Cplx 〈D,S1,R〉(t
]), Cplx 〈D,S2,R〉(t

])}
≤ Cplx 〈D,S1∪S2,R〉(t

]) ≤ Cplx 〈D,S1,R〉(t
]) + Cplx 〈D,S2,R〉(t

]). So on the one hand,
we have sup{rc〈D,S1,R〉(n), rc〈D,S2,R〉(n)} ≤ rc〈D,S1∪S2,R〉(n) for all n ∈ N which
means ι〈D,S1,R〉 ⊕ ι〈D,S2,R〉 = ι(rc〈D,S1,R〉) ⊕ ι(rc〈D,S2,R〉) v ι(rc〈D,S1∪S2,R〉) =
ι〈D,S1∪S2,R〉. On the other hand, we have rc〈D,S1∪S2,R〉(n) ≤ rc〈D,S1,R〉(n) +
rc〈D,S2,R〉(n) for all n ∈ N which means ι〈D,S1∪S2,R〉 = ι(rc〈D,S1∪S2,R〉) v
ι(rc〈D,S1,R〉 + rc〈D,S2,R〉) = ι(rc〈D,S1,R〉) ⊕ ι(rc〈D,S2,R〉) = ι〈D,S1,R〉 ⊕ ι〈D,S2,R〉
by (a).

For (i), we have ι〈D,S1,R〉 � ι〈D,S2R〉 v ι〈D,S1\S2,R〉 iff ι〈D,S1,R〉 v ι〈D,S2,R〉 ⊕
ι〈D,S1\S2,R〉 by (d). But by (b), this is equivalent to ι〈D,S1,R〉 v ι〈D,S2∪(S1\S2),R〉.
As S2 ∪ (S1 \ S2) = S1 ∪ S2, this is true by (g). ut

For any term t ∈ T , let t⇓ denote a maximal argument normal form of t,
i.e., t⇓ is an argument normal form such that17 t

i, >ε−→∗R t⇓ and such that for all
argument normal forms v with t i→∗R v, we have dl(t⇓, i→R) ≥ dl(v, i→R).

So for a TRS with the rules a → b, a → c, f(c) → a, the term f(a) has two
argument normal forms f(b) and f(c). As the derivation length of f(b) is 0 and
the derivation length of f(c) is 1, we obtain f(a)⇓ = f(c).

To prove Thm. 10, we first show that the derivation length of a term is
bounded by the sum of the derivation lengths of the maximal argument normal
forms of its subterms. So to find an upper bound for the (innermost) derivation
length of a term f(t1, . . . , tn), one can find bounds for its arguments t1, . . . , tn
first, add them up, and finally also add the derivation length of the reduced term
t⇓ in argument normal form.

Lemma 40 (Derivation Lengths of Subterms). Let t ∈ T and let R be a
TRS where t has no infinite innermost R-reduction. Then

dl(t, i→R) ≤
∑

π∈Posd(t)

dl(t|π⇓, i→R).

If R is confluent, we even have dl(t, i→R) =
∑
π∈Posd(t) dl(t|π⇓, i→R).

Proof. We use induction on |t|. For |t| = 1, the lemma is obvious as t⇓ = t. Now
let |t| > 1 and let the root symbol of t have arity n. Because of the innermost
strategy, a rewrite step at the root is only possible after its arguments have been
rewritten to normal forms. Thus, we have

dl(t, i→R) ≤ dl(t⇓, i→R) +
∑

1≤i≤n dl(t|i, i→R).

For confluent rewrite systems, t has a unique argument normal form and hence
we have equality here (and in the next equation). The subterms t|i have a smaller

17 Here, “
i, >ε−→∗R” denotes innermost reductions below the root position.

17

size than t and hence the induction hypothesis can be applied:

dl(t, i→R) ≤ dl(t⇓, i→R) +
∑

1≤i≤n
∑
π∈Posd(t|i) dl(t|i.π⇓, i→R)

=
∑
π∈Posd(t) dl(t|π⇓, i→R).

For the last step above, note that if ε /∈ Posd(t), then t⇓ is a normal form and
thus, dl(t⇓, i→R) = 0. ut

Using Lemma 40, we can now prove Thm. 10 which shows how dependency
tuples can be used to approximate the derivation lengths of terms.

Theorem 10 (Cplx bounds Derivation Length). Let R be a TRS. Let t =
f(t1, . . . , tn) ∈ T be in argument normal form, i.e., all ti are normal forms
w.r.t. R. Then we have dl(t, i→R) ≤ Cplx 〈DT (R),DT (R),R〉(t

]). If R is confluent,

we even have dl(t, i→R) = Cplx 〈DT (R),DT (R),R〉(t
]).

Proof. If t starts an infinite innermost R-reduction (i.e., dl(t, i→R) = ∞), then
there exists an infinite chain starting with t]. The reason is that as t is in argu-
ment normal form, the infinite R-reduction of t must begin on the root position.
Hence, there is a rule `1 → r1 ∈ R such that t = `1σ1 and such that r1σ1 also
starts an infinite innermost R-reduction. Thus, there exists a minimal subterm
of r1σ1 with an infinite innermost R-reduction, but where all proper subterms of
r1σ1 are innermost terminating. Since σ1 instantiates all variables with normal
forms, this minimal subterm is at a position π1 ∈ Posd(r1), i.e., the minimal
subterm is r1|π1σ1. In the infinite innermost reduction of r1|π1σ1, again all argu-
ments are normalized first, leading to a term t1 in argument normal form that
starts an infinite innermost R-reduction. So the infinite reduction of t1 must
again begin on the root position with some rule `2 → r2 ∈ R. Continuing in this
way, one obtains an infinite chain(

`]1 → Comk(. . . , r1|]π1
, . . .) | σ1

)
,
(
`]2 → Comm(. . . , r2|]π2

, . . .) | σ2
)
, . . .

So there is an infinite chain tree for `]1σ1 = t] and hence, Cplx 〈DT (R),DT (R),R〉(t
])

=∞.
Now we regard the case where t does not start an infinite innermost R-

reduction. Here, we prove the theorem by induction on dl(t, i→R). If dl(t, i→R)
= 0, then t is in R-normal form. Thus, t] is in normal form w.r.t. DT (R) ∪ R
and Cplx 〈DT (R),DT (R),R〉(t

]) = 0.
Otherwise, as the arguments of t are in normal form, there exists a rule

`→ r ∈ R and a substitution σ such that t = `σ i→R rσ = u and

dl(t, i→R) = 1 + dl(u, i→R). (21)

By Lemma 40 we have

dl(u, i→R) ≤
∑
π∈Posd(u) dl(u|π⇓, i→R) (22)

(with equality if R is confluent). As σ instantiates all variables by normal forms,
u|π = rσ|π is in normal form for all π ∈ Posd(u) \ Posd(r). For such π, this

18

implies u|π⇓ = u|π and dl(u|π⇓, i→R) = dl(u|π, i→R) = 0. Hence, from (22) we
obtain

dl(u, i→R) ≤
∑
π∈Posd(r) dl(u|π⇓, i→R). (23)

Note that dl(u|π⇓, i→R) < dl(t, i→R) and u|π⇓ is in argument normal form. So
the induction hypothesis implies

dl(u|π⇓, i→R) ≤ Cplx 〈DT (R),DT (R),R〉(u|π⇓
])

for all π. Together with (21) and (23) we obtain

dl(t, i→R) = 1 + dl(u, i→R) ≤ 1 +
∑

π∈Posd(r)

Cplx 〈DT (R),DT (R),R〉(u|π⇓
]). (24)

Let Posd(r) = {π1, . . . , πn}. Then there exists a chain tree for t] where
(`] → Comn(r|]π1

, . . . , r|]πn
) | σ) is the root node and where the children of the

root node are chain trees for u|π1
⇓], . . . , u|πn

⇓]. The reason is that r|πj
σ = u|πj

and hence, r|]πj
σ i→∗R u|πj

⇓] for all j ∈ {1, . . . , n}. For confluent R, this chain
tree is also a maximal one. Hence, together with (24) we have

dl(t, i→R) ≤ 1 +
∑
π∈Posd(r) Cplx 〈DT (R),DT (R),R〉(u|π⇓

])

≤ Cplx 〈DT (R),DT (R),R〉(t
])

with “=” instead of “≤” for confluent R. ut

Theorem 14 (Upper bound for TRS via Canonical DT Problem). Let
R be a TRS and let 〈D,D,R〉 be the corresponding canonical DT problem. Then
we have ιR v ι〈D,D,R〉 and if R is confluent, we even have ιR = ι〈D,D,R〉.

Proof. For any n ∈ N, we have rcR(n) = sup{ dl(t, i→R) | t ∈ TB , |t| ≤ n } ≤
sup{ Cplx 〈D,D,R〉(t

]) | t ∈ TB , |t| ≤ n } = rc〈D,D,R〉(n) by Thm. 10, with equality
if R is confluent. Thus, ιR = ι(rcR) v ι(rc〈D,D,R〉) = ι〈D,D,R〉 and if R is
confluent, we even have ιR = ι〈D,D,R〉. ut

Theorem 17 (Approximating Complexity by Proof Chain). Let P0
c1
;

P1
c2
; . . .

ck
; Pk be a proof chain. Then ιP0 v c1 ⊕ . . .⊕ ck.

Proof. We prove the theorem by induction on the length k of the proof chain. If
k = 0, then P0 = Pk is a solved DT problem and hence we have ιP0

= Pol0.
Otherwise by the definition of a proof chain, there exists a sound processor

Proc such that Proc(P0) = (c1, P1). Moreover, P1
c2
; . . .

ck
; Pk is also a proof

chain and the induction hypothesis implies ιP1 v c2⊕ . . .⊕ck. As Proc is sound,
we have ιP0 v c1 ⊕ ιP1 . Hence, we obtain ιP0 v c1 ⊕ . . . ck. ut

Corollary 18 (Correctness of Approach). If P0 is the canonical DT problem

for a TRS R and P0
c1
; . . .

ck
; Pk is a proof chain, then ιR v c1 ⊕ . . .⊕ ck.

Proof. We have ιR v ιP0
by Thm. 14 and ιP0

v c1 ⊕ . . .⊕ ck by Thm. 17. ut

19

Theorem 20 (Usable Rules Processor). Let 〈D,S,R〉 be a DT problem.
Then the following processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D,S,UR(D)〉).

Proof. Let 〈D,S,R〉 be a DT problem. For the soundness of this processor
we have to prove that ι〈D,S,R〉 v Pol0 ⊕ ι〈D,S,UR(D)〉. This is equivalent to
ι(rc〈D,S,R〉) v ι(rc〈D,S,UR(D)〉). This holds, since for every S ⊆ D, we have
rc〈D,S,R〉 = rc〈D,S,UR(D)〉. The reason is that in a chain tree, variables are al-
ways instantiated with normal forms. So (as in the corresponding proofs for
usable rules in termination analysis), the only rules applicable to the right-hand
side of an instantiated DT are its usable rules. ut

Theorem 23 (Reduction Pair Processor). Let P = 〈D,S,R〉 be a DT prob-
lem and (%,�) be a Com-monotonic reduction pair. Let D ⊆ % ∪ �, R ⊆ %,
and c w ι(rc�) for the function rc�(n) = sup{ dl(t],�) | t ∈ TB , |t| ≤ n}. Then
the following processor is sound: Proc(〈D,S,R〉) = (c, 〈D, S \ D�, R〉).

Proof. To prove soundness, we need to show that ι〈D,S,R〉 v c ⊕ ι〈D,S\D�,R〉
holds. This follows from Lemma 39, if we can show ι〈D,D�,R〉 v c:

ι〈D,S,R〉 v ι〈D,S∪D�,R〉 by Lemma 39(g)
= ι〈D,D�,R〉 ⊕ ι〈D,S\D�,R〉 by Lemma 39(h)
v c⊕ ι〈D,S\D�,R〉

As we have ι(rc�) v c, it suffices to show ι〈D,D�,R〉 v ι(rc�). Let s ∈ TB be a
basic term and consider an arbitrary innermost (D∪R)-reduction sequence start-

ing with s]. All terms in such a reduction sequence are of the form C[t]1, . . . , t
]
n]

for a context C consisting only of compound symbols and where t]1, . . . , t
]
n are

sharped terms from T]. As � is Com-monotonic, all D-steps in such a reduction
sequence take place on monotonic positions.

So if u i→D� v is a rewrite step in an innermost (D ∪ R)-reduction of s],
then u � v. On the other hand, % is monotonic, too. Hence, u→D%∪R v implies

u % v, where D% are those DTs from D which are weakly decreasing. Now let

s] = s0
i→ν0 t0

i→∗R s1
i→ν1 t1

i→∗R s2 . . .

be a (finite or infinite) innermost (D∪R)-reduction, where νi ∈ D for all i. Then

s] = s0 ·�0 t0 % s1 ·�1 t1 % s2 . . .

holds. Here “·�i” is “�” if νi ∈ D� and “%” else. Let n1 < n2 < . . . be the se-
quence of indexes where ·�nj

= �. For each nj we have snj
� tnj

. As %◦�◦% ⊆
�, we obtain s] � tn1 � tn2 � . . . and therefore dl(s],�) > dl(t]n1

,�) >
dl(t]n2

,�) > . . . or dl(s],�) =∞.
Hence rc�(|s|) is an upper bound for the number of D�-steps in any inner-

most (D ∪R)-reduction of s]. Moreover, Cplx 〈D,S,R〉(s
]) is the maximal number

of S-steps in any innermost (D ∪R)-reduction of s]. Hence, Cplx 〈D,D�,R〉(s
]) ≤

rc�(|s|) for all s ∈ TB . This implies rc〈D,D�,R〉(n) ≤ rc�(n) for all n and hence,
ι〈D,D�,R〉 = ι(rc〈D,D�,R〉) v ι(rc�). ut

20

Theorem 24 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let P = 〈D,S,R〉 be a DT problem and let % and � be induced by a
complexity polynomial interpretation [·]. Let m ∈ N be the maximal degree of all
polynomials [f]], for all f] with f ∈ Σd. Let D ⊆ % ∪ � and R ⊆ %. Then the
following processor is sound: Proc(〈D,S,R〉) = (Polm, 〈D, S \ D�, R〉).

Proof. Complexity polynomial interpretations are obviously Com-monotonic.
Hence, it remains to prove that Polm w ι(rc�) holds. Recall that rc�(n) =
sup{dl(t],�) | t ∈ TB and |t| ≤ n}. Let [·]0 be a variant of the polynomial in-
terpretation which maps every variable to 0. Then we have dl(t,�) ≤ [t]0 for all
terms t. Thus,

rc�(n) ≤ sup{[t]]0 | t ∈ TB and |t| ≤ n}. (25)

Let bmax be the maximum of all [f](0, . . . , 0), for all constructors f ∈ Σ \Σd.
Then for every term s containing only constructors and variables, we obtain
[s]0 ≤ bmax · |s|, where |s| is again the size of s. Hence, there exists a number
k ∈ N such that for all t ∈ TB we have

[t]]0 ≤ k · [f]](|t|, . . . , |t|), where f] = root(t]).

To see this, note that for t = f(t1, . . . , tn) ∈ TB we have

[t]]0 = [f]]([t1]0, . . . , [tn]0)

≤ [f]](bmax · |t1|, . . . , bmax · |tn|)
≤ [f]](bmax · |t|, . . . , bmax · |t|)
≤ bmmax · [f]](|t|, . . . , |t|), where m is the degree of [f]]

≤ k · [f]](|t|, . . . , |t|), where k = bdmax and d is the maximum de-
gree of all [g]], for all sharped symbols g]

(26)

Hence,
rc�(n) ≤ sup{[t]]0 | t ∈ TB and |t| ≤ n} by (25)

≤ k · [f]](n, . . . , n) by (26).

Since the polynomials [f]] have at most degree m, we have ι(rc�) v Polm. ut

Theorem 28 (Leaf Removal Processor). Let 〈D,S,R〉 be a DT problem
and let s→ t ∈ D be a leaf in the (D,R)-dependency graph. Then the following
processor is sound: Proc(〈D,S,R〉) = (Pol0, 〈D \ {s→ t},S \ {s→ t},R〉).

Proof. Let k be the maximal index of compound symbols Comk occurring in D.
Hence, a chain tree with m inner (i.e., non-leaf) nodes can have at most 1+k ·m
leaves. So for any term t, Cplx 〈D,S,R〉(t

]) ≤ 1 + k · Cplx 〈D\{s→t},S\{s→t},R〉(t
])

and thus rc〈D,S,R〉(n) ≤ 1 + k · rc〈D\{s→t},S\{s→t},R〉. This implies that the
complexity does not change when removing the leaves from chain trees, i.e.,
ι〈D,S,R〉 = ι〈D\{s→t},S\{s→t},R〉 = Pol0⊕ ι〈D\{s→t},S\{s→t},R〉, which implies the
soundness of the leaf removal processor. ut

In the following, for any set of DTs M, let |T |M be the number of nodes in
a chain tree T which are marked with DTs from M.

21

Lemma 29 (Complexity Bounded by Predecessors). Let 〈D,S,R〉 be a
DT problem and s → t ∈ D. Let Pre(s → t) ⊆ D be the predecessors of s → t,
i.e., Pre(s → t) contains all DTs u → v where there is an edge from u → v to
s→ t in the (D,R)-dependency graph. Then ι〈D,{s→t},R〉 v ι〈D,Pre(s→t),R〉.

Proof. Let k be the maximal index of the compound symbols Comk occurring
in Pre(s → t) and let T be a (D,R)-chain tree. We show that |T |{s→t} ≤
1 + k · |T |Pre(s→t).

Any node of T labeled with s → t is either the root node or a child of a
node labeled with a DT from Pre(s→ t). As every node labeled with a DT from
Pre(s → t) has at most k children (since every chain corresponds to a path in
the dependency graph), we obtain |T |{s→t} ≤ 1 + k · |T |Pre(s→t).

Note that this holds for any (D,R)-chain tree T . This implies

Cplx 〈D,{s→t},R〉(t
]) ≤ 1 + k · Cplx 〈D,Pre(s→t),R〉(t

])

for any term t] ∈ T]. Thus, rc〈D,{s→t},R〉(n) ≤ 1 + k · rc〈D,Pre(s→t),R〉(n) for all
n and hence ι〈D,{s→t},R〉 v ι〈D,Pre(s→t),R〉. ut

Corollary 32 (Correctness). If P0 is the canonical extended DT problem for

a TRS R and P0
c1
; . . .

ck
; Pk is a proof chain, then ιR = γP0

v c1 ⊕ . . .⊕ ck.

Proof. We have ιR = ι〈DT (R),DT (R),R〉 by Thm. 14. Moreover, ι〈DT (R),DT (R),R〉
= γ〈DT (R),DT (R),∅,R〉 = γP0 . The proof for γP0 v c1 ⊕ . . . ⊕ ck is completely
analogous to the proof of Thm. 17. ut

Theorem 33 (Knowledge Propagation Processor). Let 〈D,S,K,R〉 be an
extended DT problem, s→ t ∈ S, and Pre(s→ t) ⊆ K. Then the following pro-
cessor is sound: Proc(〈D,S,K,R〉) = (Pol0, 〈D, S\{s→ t}, K∪{s→ t}, R〉).

Proof. We have to show that γ〈D,S,K,R〉 v Pol0 ⊕ γ〈D,S\{s→t},K∪{s→t},R〉, i.e.,
γ〈D,S,K,R〉 v γ〈D,S\{s→t},K∪{s→t},R〉. By the definition of γ, this is equivalent to

ι〈D,S,R〉 � ι〈D,K,R〉 v ι〈D,S\{s→t},R〉 � ι〈D,K∪{s→t},R〉. (27)

From Lemma 29 and Lemma 39(g), we have ι〈D,{s→t},R〉 v ι〈D,Pre({s→t}),R〉 v
ι〈D,K,R〉. Hence, Lemma 39(h) implies ι〈D,K∪{s→t},R〉 = ι〈D,K,R〉⊕ι〈D,{s→t},R〉 =
ι〈D,K,R〉. Thus for (27), it suffices to show

ι〈D,S,R〉 � ι〈D,K∪{s→t},R〉 v ι〈D,S\{s→t},R〉 � ι〈D,K∪{s→t},R〉. (28)

To this end, we consider two cases: If ι〈D,{s→t},R〉 < ι〈D,S,R〉 holds, we have
ι〈D,S,R〉 = ι〈D,S,R〉 � ι〈D,{s→t},R〉 v ι〈D,S\{s→t},R〉 by Lemma 39(i). Otherwise,
we obtain ι〈D,S,R〉 v ι〈D,{s→t},R〉 v ι〈D,K∪{s→t},R〉 by Lemma 39(g) and thus
ι〈D,S,R〉 � ι〈D,K∪{s→t},R〉 = Pol0. In both cases, the required inequality (28)
follows. ut

Theorem 34 (Processors for Extended DT Problems). Let P = 〈D,S,
K,R〉 be an extended DT problem. Then the following processors are sound.

22

• The usable rules processor: Proc(P) = (Pol0, 〈D,S,K,UR(D)〉).
• The leaf removal processor Proc(P) = (Pol0, 〈D \ {s → t},S \ {s → t},
K \ {s→ t},R〉), if s→ t is a leaf in the (D,R)-dependency graph.
• The reduction pair processor: Proc(P) = (c, 〈D, S \ D�, K ∪ D�, R〉),

if (%,�) is a Com-monotonic reduction pair, D ⊆ � ∪ %, R ⊆ %, and
c w ι(rc�) for the function rc�(n) = sup{dl(t],�) | t ∈ TB , |t| ≤ n}.

Proof. The soundness of the usable rules processor follows since ι〈D,S,R〉 =
ι〈D,S,UR(D)〉 and ι〈D,K,R〉 = ι〈D,K,UR(D)〉, as in Thm. 20. Thus, γ〈D,S,K,R〉 =
γ〈D,S,K,UR(D)〉.

Similarly, the soundness of the leaf removal processor holds since ι〈D,S,R〉 =
ι〈D\{s→t},S\{s→t},R〉 and ι〈D,K,R〉 = ι〈D\{s→t},K\{s→t},R〉, as in Thm. 28. Hence,
γ〈D,S,K,R〉 = γ〈D\{s→t},S\{s→t},K\{s→t},R〉.

For the soundness of the reduction pair processor, we have to show γP v
c⊕ γ〈D,S\D�,K∪D�,R〉. If we have γP v c, then this is obviously true. Hence, we
consider c < γP . Now we have to show γP v γ〈D,S\D�,K∪D�,R〉. By the definition
of γ, this means

ι〈D,S,R〉 � ι〈D,K,R〉 v ι〈D,S\D�,R〉 � ι〈D,K∪D�,R〉. (29)

To show (29), we prove (i) ι〈D,S,R〉 v ι〈D,S\D�,R〉 and (ii) ι〈D,K∪D�,R〉 <

ι〈D,S,R〉. Then (29) follows by the definition of �.
We first show (i). As c < γP implies γP 6= Pol0, we have γP = ι〈D,S,R〉 and

therefore c < ι〈D,S,R〉. Moreover, from the proof of Thm. 23 we have ι〈D,D�,R〉 v
ι(rc�) v c. Hence (i) holds, using Lemma 39(i) for the last inequality:

ι〈D,S,R〉 = ι〈D,S,R〉 � c v ι〈D,S,R〉 � ι〈D,D�,R〉 v ι〈D,S\D�,R〉

Now we show (ii). From Lemma 39(h) and ι〈D,D�,R〉 v c we have

ι〈D,K∪D�,R〉 = ι〈D,K,R〉 ⊕ ι〈D,D�,R〉 v ι〈D,K,R〉 ⊕ c. (30)

Note that γP 6= Pol0 implies ι〈D,K,R〉 < ι〈D,S,R〉. Together with c < ι〈D,S,R〉 this
implies ι〈D,K,R〉 ⊕ c < ι〈D,S,R〉 and hence (ii) follows with (30). ut

Theorem 36 (Narrowing Processor). Let P = 〈D,S,K,R〉 be an extended
DT problem and let s→ t ∈ D with t = Comn(t1, . . . , ti, . . . , tn). Let µ1, . . . , µd
be the narrowing substitutions of ti with the corresponding narrowing results
w1, . . . , wd, where d ≥ 0. Let tk1 , . . . , tkm be the terms from t1, . . . , tn that are
not captured by µ1, . . . , µd, where k1, . . . , km are pairwise different. We define

M = {sµj → Comn(t1µj , . . . , ti−1µj , wj , ti+1µj , . . . , tnµj) | 1 ≤ j ≤ d}
∪ {s → Comm(tk1 , . . . , tkm)}.

Then the following processor is sound: Proc(P) = (Pol0, 〈D′,S ′,K′,R〉), where
D′ = D[s→ t /M] and S ′ = S[s→ t /M]. K′ results from K by removing s→ t
and all DTs that are reachable from s→ t in the (D,R)-dependency graph.

23

Proof. W.l.o.g. letM and D be disjoint (otherwise, we apply a variable renaming
on one of them). Given a (D,R)-chain tree T , we construct a (D′,R)-chain tree
T ′ by repeatedly replacing every node of the form (s→ t | σ) by a new node of
the form (sµ → t′ | σ′) with sµ → t′ ∈ M. This implies |T |{s→t} = |T ′|M and
for any DT u→ v /∈ {s→ t} ∪M, we have |T |{u→v} = |T ′|{u→v}. However, we
have to show the following two statements in order to ensure that we still obtain
a chain tree:

(A) Relation to predecessor: If (s → t | σ) was the root node of the chain tree
for sσ, then the new node should also be the root note of a chain tree for
sσ, i.e., we need sσ = sµσ′.
Otherwise, if (s → t | σ) had a predecessor (p → Comk(q1, . . . , qk) | ρ)
with qjρ

i→∗R sσ, then the same relation should also hold for the new node
(sµ→ t′ | σ′), i.e., we need qjρ

i→∗R sµσ′. Note that this is obviously fulfilled
if sσ = sµσ′.

(B) Relation to successors: Let (s → t | σ) have the children labeled with
(u1 → v1|τ1), . . . , (ue → ve|τe) for e ≥ 0. Hence, there exist pairwise dis-
joint i1, . . . , ie ∈ {1, . . . , n} such that tijσ

i→∗R ujτj for all 1 ≤ j ≤ e. When
replacing (s → t | σ) by a new node (sµ → t′ | σ′) with sµ → t′ ∈ M, we
have to show that there exist pairwise different indexes i′1, . . . , i

′
e such that

t′|i′jσ
′ i→∗R ujτj for all 1 ≤ j ≤ e. Note that this is obviously fulfilled if for

all j we have t′|i′jσ
′ = tijσ.

We now distinguish three cases. For each of them, we show how to choose
the new node (sµ → t′ | σ′) such that the relations to the predecessor and to
the successors in (A) and (B) still hold.

• Case 1: none of the terms ti1 , . . . , tie is captured by µ1, . . . , µd.

Hence, {i1, . . . , ie} ⊆ {k1, . . . , km}. We choose sµ→ t′ to be s→ Comm(tk1 ,
. . . , tkm) (i.e., µ is the identity) and we choose σ′ = σ. This implies sσ =
sµσ′ and thus, (A) holds. Moreover for every ij , there exists an i′j with
Comm(tk1 , . . . , tkm)|i′j = tij , since ij ∈ {k1, . . . , km}. Thus, t′|i′jσ

′ =

Comm(tk1 , . . . , tkm)|i′jσ = tijσ, which proves (B).

• Case 2: i ∈ {i1, . . . , ie}.
Thus, there is a 1 ≤ j0 ≤ e with i = ij0 . Hence, tiσ = tij0σ

i→∗R uj0τj0 .
First regard the case where this reduction works in zero steps, i.e., tiσ =
uj0τj0 . W.l.o.g., we can assume that uj0 is variable-disjoint from ti. Then ti
unifies with uj0 using some mgu µ where σ = µσ′ and τj0 = µτ ′j0 for some
substitutions σ′ and τ ′j0 . Since (s→ t | σ) and (uj0 → vj0 | τj0) are nodes in
a chain tree, both sσ and uj0τj0 are in R-normal form. This implies that sµ
and uj0µ are also inR-normal form. Hence, ti has the narrowing substitution
µ with corresponding result tiµ. Thus, sµ→ tµ ∈M and we can replace the
node (s→ t | σ) by (sµ→ tµ | σ′). For (A), we have sµσ′ = sσ. For (B), we
let i′j = ij for all 1 ≤ j ≤ e. Then we obtain t′|i′jσ

′ = t′|ijσ′ = t|ijµσ′ = t|ijσ,

which implies (B).

24

Otherwise, the reduction tiσ
i→∗R uj0τj0 takes at least one step. Let π be the

position of tiσ where the first reduction step takes place. We have π ∈ Pos(ti)
and ti|π /∈ V, since the reduction cannot be “in σ”. The reason is that
otherwise, sσ would not be an R-normal form, due to V(ti) ⊆ V(s). Thus,
there exists a rule `→ r ∈ R which matches ti|πσ. W.l.o.g., we can assume
that ` is variable-disjoint to ti. Then we can extend σ to the variables of `
such that ti|πσ = `σ and

tiσ = ti[`]πσ
i→R ti[r]πσ

i→∗R uj0τj0 . (31)

Since σ is a unifier of ti|π and `, they also have an mgu µ with σ = µσ′

for some substitution σ′. Moreover, since sσ is in R-normal form, sµ is in
R-normal form as well. Hence, µ is a narrowing substitution of ti and the
corresponding narrowing result is ti[r]πµ.
Let t′ = Comn(t1, . . . , ti−1, ti[r]π, ti+1, . . . , tn)µ. Then sµ → t′ ∈ M and
we replace the node (s → t | σ) by (sµ → t′ | σ′). It remains to show that
(A) and (B) hold.
(A) is satisfied since σ = µσ′ and hence, sσ = sµσ′. For (B), we let i′j = ij
for all 1 ≤ j ≤ e. For j0, we now obtain

t′|i′j0σ
′ = t′|ij0σ

′ = ti[r]πµσ
′ = ti[r]πσ

i→∗R uj0τj0

by (31). For j 6= j0, we have t′|i′jσ
′ = t′|ijσ′ = t|ijµσ′ = t|ijσ, which implies

(B).

• Case 3: i /∈ {i1, . . . , ie} and a term from ti1 , ..., tie is captured by µ1, ..., µd.

Let 1 ≤ j0 ≤ e such that tij0 is captured by µ1, . . . , µd. Hence, tij0σ
i→∗R

uj0τj0 . As in Case 2, this implies that there exists a narrowing substitu-
tion µ of tij0 with σ = µσ̃ for some substitution σ̃. Since tij0 is captured
by µ1, . . . , µd, there is a 1 ≤ j1 ≤ d where µj1 is more general than µ,
i.e., µ = µj1σ for some substitution σ. We define σ′ = σσ̃ which implies
σ = µj1σ

′. Now we replace (s → t | σ) by (sµj1 → t′ | σ′) where t′ =
Comn(t1µj1 , . . . , ti−1µj1 , wj1 , ti+1µj1 , . . . , tnµj1). Then (A) holds, since sσ
= sµj1σ

′. For (B), we let i′j = ij for all 1 ≤ j ≤ e. Since i /∈ {i1, . . . , ie}, we
obtain t′|i′jσ

′ = t′|ijσ′ = t|ijµj1σ′ = t|ijσ, which implies (B).

Thus, for any (D,R)-chain tree T for a sharped term w] there exists a (D′,R)-
chain tree T ′ for the same term w] where |T |{s→t} = |T ′|M and for any DT
u → v /∈ {s → t} ∪M, we have |T |{u→v} = |T ′|{u→v}. Hence, for any sharped

term w] and any S ⊆ D with S ′ = S[s→ t / M], we have Cplx 〈D,S,R〉(w
]) ≤

Cplx 〈D′,S′,R〉(w
]). This implies ι〈D,S,R〉 v ι〈D′,S′,R〉.

Moreover, if K ⊆ D and K′ results from K by removing s → t and all DTs
that are reachable from s → t in the (D,R)-dependency graph, then K′ also
contains no DT that is contained in M or reachable from M in the (D′,R)-
dependency graph. Hence, for Cplx 〈D,K′,R〉(w

]) or Cplx 〈D′,K′,R〉(w
]) it suffices to

consider chain trees not containing s → t or DTs from M. Such chain trees

25

are both (D,R)- and (D′,R)-chain trees. Hence, we obtain Cplx 〈D,K′,R〉(w
]) =

Cplx 〈D′,K′,R〉(w
]) for all w] and thus, ι〈D,K′,R〉 = ι〈D′,K′,R〉. As K′ ⊆ K, we have

ι〈D,K′,R〉 v ι〈D,K,R〉 by Lemma 39(g) and hence ι〈D′,K′,R〉 v ι〈D,K,R〉.
From ι〈D,S,R〉 v ι〈D′,S′,R〉 and ι〈D′,K′,R〉 v ι〈D,K,R〉, we obtain that γP v

γ〈D′,S′,K′,R〉, i.e., the narrowing processor is sound. ut

26

