(0) Obligation:

Clauses:

star(U, []) :- !.
star([], W) :- ','(!, =(W, [])).
star(U, W) :- ','(app(U, V, W), star(U, V)).
app([], L, L).
app(.(X, L), M, .(X, N)) :- app(L, M, N).
=(X, X).

Query: star(g,g)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

star(U, []) :- !.
star([], W) :- ','(!, user_defined_=(W, [])).
star(U, W) :- ','(app(U, V, W), star(U, V)).
app([], L, L).
app(.(X, L), M, .(X, N)) :- app(L, M, N).
user_defined_=(X, X).

Query: star(g,g)

(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

starA_in_gg(T4, []) → starA_out_gg(T4, [])
starA_in_gg(.(T19, T20), .(T19, T21)) → U1_gg(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
pB_in_gagg(T20, T24, T21, T19) → U3_gagg(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
appC_in_gag([], T31, T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), X60, .(T38, T40)) → U2_gag(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
U2_gag(T38, T39, X60, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))
U3_gagg(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_gagg(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U4_gagg(T20, T24, T21, T19, starA_out_gg(.(T19, T20), T24)) → pB_out_gagg(T20, T24, T21, T19)
U1_gg(T19, T20, T21, pB_out_gagg(T20, X27, T21, T19)) → starA_out_gg(.(T19, T20), .(T19, T21))

The argument filtering Pi contains the following mapping:
starA_in_gg(x1, x2)  =  starA_in_gg(x1, x2)
[]  =  []
starA_out_gg(x1, x2)  =  starA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_gagg(x1, x2, x3, x4)  =  pB_in_gagg(x1, x3, x4)
U3_gagg(x1, x2, x3, x4, x5)  =  U3_gagg(x1, x3, x4, x5)
appC_in_gag(x1, x2, x3)  =  appC_in_gag(x1, x3)
appC_out_gag(x1, x2, x3)  =  appC_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
U4_gagg(x1, x2, x3, x4, x5)  =  U4_gagg(x1, x2, x3, x4, x5)
pB_out_gagg(x1, x2, x3, x4)  =  pB_out_gagg(x1, x2, x3, x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

STARA_IN_GG(.(T19, T20), .(T19, T21)) → U1_GG(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
STARA_IN_GG(.(T19, T20), .(T19, T21)) → PB_IN_GAGG(T20, X27, T21, T19)
PB_IN_GAGG(T20, T24, T21, T19) → U3_GAGG(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
PB_IN_GAGG(T20, T24, T21, T19) → APPC_IN_GAG(T20, T24, T21)
APPC_IN_GAG(.(T38, T39), X60, .(T38, T40)) → U2_GAG(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
APPC_IN_GAG(.(T38, T39), X60, .(T38, T40)) → APPC_IN_GAG(T39, X60, T40)
U3_GAGG(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_GAGG(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U3_GAGG(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → STARA_IN_GG(.(T19, T20), T24)

The TRS R consists of the following rules:

starA_in_gg(T4, []) → starA_out_gg(T4, [])
starA_in_gg(.(T19, T20), .(T19, T21)) → U1_gg(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
pB_in_gagg(T20, T24, T21, T19) → U3_gagg(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
appC_in_gag([], T31, T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), X60, .(T38, T40)) → U2_gag(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
U2_gag(T38, T39, X60, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))
U3_gagg(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_gagg(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U4_gagg(T20, T24, T21, T19, starA_out_gg(.(T19, T20), T24)) → pB_out_gagg(T20, T24, T21, T19)
U1_gg(T19, T20, T21, pB_out_gagg(T20, X27, T21, T19)) → starA_out_gg(.(T19, T20), .(T19, T21))

The argument filtering Pi contains the following mapping:
starA_in_gg(x1, x2)  =  starA_in_gg(x1, x2)
[]  =  []
starA_out_gg(x1, x2)  =  starA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_gagg(x1, x2, x3, x4)  =  pB_in_gagg(x1, x3, x4)
U3_gagg(x1, x2, x3, x4, x5)  =  U3_gagg(x1, x3, x4, x5)
appC_in_gag(x1, x2, x3)  =  appC_in_gag(x1, x3)
appC_out_gag(x1, x2, x3)  =  appC_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
U4_gagg(x1, x2, x3, x4, x5)  =  U4_gagg(x1, x2, x3, x4, x5)
pB_out_gagg(x1, x2, x3, x4)  =  pB_out_gagg(x1, x2, x3, x4)
STARA_IN_GG(x1, x2)  =  STARA_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4)  =  U1_GG(x1, x2, x3, x4)
PB_IN_GAGG(x1, x2, x3, x4)  =  PB_IN_GAGG(x1, x3, x4)
U3_GAGG(x1, x2, x3, x4, x5)  =  U3_GAGG(x1, x3, x4, x5)
APPC_IN_GAG(x1, x2, x3)  =  APPC_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x1, x2, x4, x5)
U4_GAGG(x1, x2, x3, x4, x5)  =  U4_GAGG(x1, x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

STARA_IN_GG(.(T19, T20), .(T19, T21)) → U1_GG(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
STARA_IN_GG(.(T19, T20), .(T19, T21)) → PB_IN_GAGG(T20, X27, T21, T19)
PB_IN_GAGG(T20, T24, T21, T19) → U3_GAGG(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
PB_IN_GAGG(T20, T24, T21, T19) → APPC_IN_GAG(T20, T24, T21)
APPC_IN_GAG(.(T38, T39), X60, .(T38, T40)) → U2_GAG(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
APPC_IN_GAG(.(T38, T39), X60, .(T38, T40)) → APPC_IN_GAG(T39, X60, T40)
U3_GAGG(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_GAGG(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U3_GAGG(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → STARA_IN_GG(.(T19, T20), T24)

The TRS R consists of the following rules:

starA_in_gg(T4, []) → starA_out_gg(T4, [])
starA_in_gg(.(T19, T20), .(T19, T21)) → U1_gg(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
pB_in_gagg(T20, T24, T21, T19) → U3_gagg(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
appC_in_gag([], T31, T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), X60, .(T38, T40)) → U2_gag(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
U2_gag(T38, T39, X60, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))
U3_gagg(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_gagg(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U4_gagg(T20, T24, T21, T19, starA_out_gg(.(T19, T20), T24)) → pB_out_gagg(T20, T24, T21, T19)
U1_gg(T19, T20, T21, pB_out_gagg(T20, X27, T21, T19)) → starA_out_gg(.(T19, T20), .(T19, T21))

The argument filtering Pi contains the following mapping:
starA_in_gg(x1, x2)  =  starA_in_gg(x1, x2)
[]  =  []
starA_out_gg(x1, x2)  =  starA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_gagg(x1, x2, x3, x4)  =  pB_in_gagg(x1, x3, x4)
U3_gagg(x1, x2, x3, x4, x5)  =  U3_gagg(x1, x3, x4, x5)
appC_in_gag(x1, x2, x3)  =  appC_in_gag(x1, x3)
appC_out_gag(x1, x2, x3)  =  appC_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
U4_gagg(x1, x2, x3, x4, x5)  =  U4_gagg(x1, x2, x3, x4, x5)
pB_out_gagg(x1, x2, x3, x4)  =  pB_out_gagg(x1, x2, x3, x4)
STARA_IN_GG(x1, x2)  =  STARA_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4)  =  U1_GG(x1, x2, x3, x4)
PB_IN_GAGG(x1, x2, x3, x4)  =  PB_IN_GAGG(x1, x3, x4)
U3_GAGG(x1, x2, x3, x4, x5)  =  U3_GAGG(x1, x3, x4, x5)
APPC_IN_GAG(x1, x2, x3)  =  APPC_IN_GAG(x1, x3)
U2_GAG(x1, x2, x3, x4, x5)  =  U2_GAG(x1, x2, x4, x5)
U4_GAGG(x1, x2, x3, x4, x5)  =  U4_GAGG(x1, x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPC_IN_GAG(.(T38, T39), X60, .(T38, T40)) → APPC_IN_GAG(T39, X60, T40)

The TRS R consists of the following rules:

starA_in_gg(T4, []) → starA_out_gg(T4, [])
starA_in_gg(.(T19, T20), .(T19, T21)) → U1_gg(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
pB_in_gagg(T20, T24, T21, T19) → U3_gagg(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
appC_in_gag([], T31, T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), X60, .(T38, T40)) → U2_gag(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
U2_gag(T38, T39, X60, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))
U3_gagg(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_gagg(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U4_gagg(T20, T24, T21, T19, starA_out_gg(.(T19, T20), T24)) → pB_out_gagg(T20, T24, T21, T19)
U1_gg(T19, T20, T21, pB_out_gagg(T20, X27, T21, T19)) → starA_out_gg(.(T19, T20), .(T19, T21))

The argument filtering Pi contains the following mapping:
starA_in_gg(x1, x2)  =  starA_in_gg(x1, x2)
[]  =  []
starA_out_gg(x1, x2)  =  starA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_gagg(x1, x2, x3, x4)  =  pB_in_gagg(x1, x3, x4)
U3_gagg(x1, x2, x3, x4, x5)  =  U3_gagg(x1, x3, x4, x5)
appC_in_gag(x1, x2, x3)  =  appC_in_gag(x1, x3)
appC_out_gag(x1, x2, x3)  =  appC_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
U4_gagg(x1, x2, x3, x4, x5)  =  U4_gagg(x1, x2, x3, x4, x5)
pB_out_gagg(x1, x2, x3, x4)  =  pB_out_gagg(x1, x2, x3, x4)
APPC_IN_GAG(x1, x2, x3)  =  APPC_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPC_IN_GAG(.(T38, T39), X60, .(T38, T40)) → APPC_IN_GAG(T39, X60, T40)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPC_IN_GAG(x1, x2, x3)  =  APPC_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPC_IN_GAG(.(T38, T39), .(T38, T40)) → APPC_IN_GAG(T39, T40)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPC_IN_GAG(.(T38, T39), .(T38, T40)) → APPC_IN_GAG(T39, T40)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

STARA_IN_GG(.(T19, T20), .(T19, T21)) → PB_IN_GAGG(T20, X27, T21, T19)
PB_IN_GAGG(T20, T24, T21, T19) → U3_GAGG(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
U3_GAGG(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → STARA_IN_GG(.(T19, T20), T24)

The TRS R consists of the following rules:

starA_in_gg(T4, []) → starA_out_gg(T4, [])
starA_in_gg(.(T19, T20), .(T19, T21)) → U1_gg(T19, T20, T21, pB_in_gagg(T20, X27, T21, T19))
pB_in_gagg(T20, T24, T21, T19) → U3_gagg(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
appC_in_gag([], T31, T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), X60, .(T38, T40)) → U2_gag(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
U2_gag(T38, T39, X60, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))
U3_gagg(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → U4_gagg(T20, T24, T21, T19, starA_in_gg(.(T19, T20), T24))
U4_gagg(T20, T24, T21, T19, starA_out_gg(.(T19, T20), T24)) → pB_out_gagg(T20, T24, T21, T19)
U1_gg(T19, T20, T21, pB_out_gagg(T20, X27, T21, T19)) → starA_out_gg(.(T19, T20), .(T19, T21))

The argument filtering Pi contains the following mapping:
starA_in_gg(x1, x2)  =  starA_in_gg(x1, x2)
[]  =  []
starA_out_gg(x1, x2)  =  starA_out_gg(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_gg(x1, x2, x3, x4)  =  U1_gg(x1, x2, x3, x4)
pB_in_gagg(x1, x2, x3, x4)  =  pB_in_gagg(x1, x3, x4)
U3_gagg(x1, x2, x3, x4, x5)  =  U3_gagg(x1, x3, x4, x5)
appC_in_gag(x1, x2, x3)  =  appC_in_gag(x1, x3)
appC_out_gag(x1, x2, x3)  =  appC_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
U4_gagg(x1, x2, x3, x4, x5)  =  U4_gagg(x1, x2, x3, x4, x5)
pB_out_gagg(x1, x2, x3, x4)  =  pB_out_gagg(x1, x2, x3, x4)
STARA_IN_GG(x1, x2)  =  STARA_IN_GG(x1, x2)
PB_IN_GAGG(x1, x2, x3, x4)  =  PB_IN_GAGG(x1, x3, x4)
U3_GAGG(x1, x2, x3, x4, x5)  =  U3_GAGG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

STARA_IN_GG(.(T19, T20), .(T19, T21)) → PB_IN_GAGG(T20, X27, T21, T19)
PB_IN_GAGG(T20, T24, T21, T19) → U3_GAGG(T20, T24, T21, T19, appC_in_gag(T20, T24, T21))
U3_GAGG(T20, T24, T21, T19, appC_out_gag(T20, T24, T21)) → STARA_IN_GG(.(T19, T20), T24)

The TRS R consists of the following rules:

appC_in_gag([], T31, T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), X60, .(T38, T40)) → U2_gag(T38, T39, X60, T40, appC_in_gag(T39, X60, T40))
U2_gag(T38, T39, X60, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))

The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
appC_in_gag(x1, x2, x3)  =  appC_in_gag(x1, x3)
appC_out_gag(x1, x2, x3)  =  appC_out_gag(x1, x2, x3)
U2_gag(x1, x2, x3, x4, x5)  =  U2_gag(x1, x2, x4, x5)
STARA_IN_GG(x1, x2)  =  STARA_IN_GG(x1, x2)
PB_IN_GAGG(x1, x2, x3, x4)  =  PB_IN_GAGG(x1, x3, x4)
U3_GAGG(x1, x2, x3, x4, x5)  =  U3_GAGG(x1, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

STARA_IN_GG(.(T19, T20), .(T19, T21)) → PB_IN_GAGG(T20, T21, T19)
PB_IN_GAGG(T20, T21, T19) → U3_GAGG(T20, T21, T19, appC_in_gag(T20, T21))
U3_GAGG(T20, T21, T19, appC_out_gag(T20, T24, T21)) → STARA_IN_GG(.(T19, T20), T24)

The TRS R consists of the following rules:

appC_in_gag([], T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), .(T38, T40)) → U2_gag(T38, T39, T40, appC_in_gag(T39, T40))
U2_gag(T38, T39, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))

The set Q consists of the following terms:

appC_in_gag(x0, x1)
U2_gag(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PB_IN_GAGG(T20, T21, T19) → U3_GAGG(T20, T21, T19, appC_in_gag(T20, T21))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(PB_IN_GAGG(x1, x2, x3)) = 1 + x2   
POL(STARA_IN_GG(x1, x2)) = x2   
POL(U2_gag(x1, x2, x3, x4)) = 1 + x4   
POL(U3_GAGG(x1, x2, x3, x4)) = x4   
POL([]) = 0   
POL(appC_in_gag(x1, x2)) = x2   
POL(appC_out_gag(x1, x2, x3)) = x1 + x2   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

appC_in_gag([], T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), .(T38, T40)) → U2_gag(T38, T39, T40, appC_in_gag(T39, T40))
U2_gag(T38, T39, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

STARA_IN_GG(.(T19, T20), .(T19, T21)) → PB_IN_GAGG(T20, T21, T19)
U3_GAGG(T20, T21, T19, appC_out_gag(T20, T24, T21)) → STARA_IN_GG(.(T19, T20), T24)

The TRS R consists of the following rules:

appC_in_gag([], T31) → appC_out_gag([], T31, T31)
appC_in_gag(.(T38, T39), .(T38, T40)) → U2_gag(T38, T39, T40, appC_in_gag(T39, T40))
U2_gag(T38, T39, T40, appC_out_gag(T39, X60, T40)) → appC_out_gag(.(T38, T39), X60, .(T38, T40))

The set Q consists of the following terms:

appC_in_gag(x0, x1)
U2_gag(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(24) TRUE