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Abstract Current techniques and tools for automated termination analysis of term

rewrite systems (TRSs) are already very powerful. However, they fail for algorithms

whose termination is essentially due to an inductive argument. Therefore, we show

how to couple the dependency pair method for termination of TRSs with inductive

theorem proving. As confirmed by the implementation of our new approach in the tool

AProVE, now TRS termination techniques are also successful on this important class

of algorithms.

1 Introduction

There are many powerful techniques and tools to prove termination of TRSs auto-

matically. Moreover, tools from term rewriting are also very successful in termination

analysis of real programming languages like, e.g., Haskell and Prolog [18,36]. To mea-

sure their performance, there is an annual international Termination Competition,1

where the tools compete on a large data base of TRSs. Nevertheless, there exist natu-

ral algorithms like the following one where all these tools fail.

Example 1 Consider the following TRS Rsort.

ge(x, 0) → true

ge(0, s(y)) → false

ge(s(x), s(y)) → ge(x, y)
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eql(0, 0) → true

eql(s(x), 0) → false

eql(0, s(y)) → false

eql(s(x), s(y)) → eql(x, y)

max(empty) → 0

max(add(x, empty)) → x

max(add(x, add(y, xs))) → if1(ge(x, y), x, y, xs)

if1(true, x, y, xs) → max(add(x, xs))

if1(false, x, y, xs) → max(add(y, xs))

del(x, empty) → empty

del(x, add(y, xs)) → if2(eql(x, y), x, y, xs)

if2(true, x, y, xs) → xs

if2(false, x, y, xs) → add(y,del(x, xs))

sort(empty) → empty

sort(add(x, xs)) → add(max(add(x, xs)), sort(del(max(add(x, xs)), add(x, xs))))

Here, numbers are represented with 0 and s (for the successor function) and lists are

represented with empty (for the empty list) and add (for list insertion).2 For any list

xs , max(xs) computes its maximum (where max(empty) is 0), and del(n, xs) deletes the

first occurrence of n from the list xs. If n does not occur in xs , then del(n, xs) returns

xs . Algorithms like max and del are often expressed with conditions. Such conditional

rules can be automatically transformed into unconditional ones (cf. e.g. [31]) and we

already did this transformation in our example. To sort a non-empty list ys (i.e., a list

of the form “add(x, xs)”), sort(ys) reduces to “add(max(ys), sort(del(max(ys), ys)))”. So

sort(ys) starts with the maximum of ys and then sort is called recursively on the list

that results from ys by deleting the first occurrence of its maximum. Note that

every non-empty list contains its maximum. (1)

Hence, the list del(max(ys), ys) is shorter than ys and thus, Rsort is terminating.

So (1) is the main argument needed for termination of Rsort. Thus, when trying

to prove termination of TRSs like Rsort automatically, one faces two problems:

(a) One has to detect the main argument needed for termination and one has to find

out that the TRS is terminating provided that this argument is valid.

(b) One has to prove that the argument detected in (a) is valid.

In our example, (1) requires a non-trivial induction proof that relies on the max-

and del-rules. Such proofs cannot be done by TRS termination techniques, but they

could be performed by state-of-the-art inductive theorem provers [5,6,8,9,22,24,40,42,

45]. So to solve Problem (b), we would like to couple termination techniques for TRSs

(like the dependency pair (DP) method which is implemented in virtually every current

2 We use the name “add” instead of the more common name “cons” to avoid confusion with
the pre-defined function symbol “cons” in Lisp and ACL2, cf. Section 5.2.
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TRS termination tool) with an inductive theorem prover. Ideally, this prover should

perform the validity proof in (b) fully automatically, but of course it is also possible

to have user interaction here. However, it still remains to solve Problem (a). Thus,

one has to extend the TRS termination techniques such that they can automatically

synthesize an argument like (1) and find out that this argument is sufficient in order

to complete the termination proof. This is the subject of the current paper.

There is already work on applying inductive reasoning in termination proofs. Some

approaches integrate special forms of inductive reasoning into the termination method

itself (e.g., to handle algorithms that increase arguments [7,17] or to prove well-

foundedness of evaluation using special termination graphs [19,32]). These approaches

are successful on certain forms of algorithms, but they cannot handle examples like

Example 1 where one needs more general forms of inductive reasoning. Therefore, in

this paper our goal is to couple the termination method with an arbitrary (black box)

inductive theorem prover which may use any kind of proof techniques.

There exist also approaches where a full inductive theorem prover like Nqthm, ACL2,

or Isabelle is used to perform the whole termination proof of a functional program

[6,13,26,29,41]. Such approaches could potentially handle algorithms like Example 1

and indeed, Example 1 is similar to an algorithm from [13,41]. In general, to prove

termination one has to solve two tasks:

(i) one has to synthesize suitable well-founded orders and

(ii) one has to prove that recursive calls decrease w.r.t. these orders.

If there is just an inductive theorem prover available for the termination proof, then for

Task (i) one can only use a fixed small set of orders or otherwise ask the user to provide

suitable well-founded orders manually. Moreover, then Task (ii) has to be tackled by the

full theorem prover which may often pose problems for automation. In contrast, there

are many TRS techniques and tools available that are extremely powerful for Task (i)

and that offer several specialized methods to perform Task (ii) fully automatically in

a very efficient way. So in most cases, no inductive theorem prover is needed for Task

(ii). Nevertheless, there exist important algorithms (like Rsort) where Task (ii) indeed

requires inductive theorem proving. Thus, we propose to use the “best of both worlds”,

i.e., to apply TRS techniques whenever possible, but to use an inductive theorem prover

for those parts where it is needed.

After recapitulating the DP method in Section 2, in Section 3 we present the

main idea for our improvement. To make this improvement powerful in practice, we

need the new result that innermost termination of many-sorted term rewriting and of

unsorted term rewriting is equivalent. We expect that this observation will be useful

also for other applications in term rewriting, since TRSs are usually considered to be

unsorted. We use this result in Section 4 where we show how the DP method can be

coupled with inductive theorem proving in order to prove termination of TRSs like

Rsort automatically.

In Section 5, we discuss how to automate our new technique efficiently. The problem

is that the termination argument (which has to be proved by induction) depends on

the chosen underlying well-founded order. Hence, the question is how to find a suitable

order such that the resulting termination argument is valid and can be proved by an

inductive theorem prover. To evaluate our contributions empirically, we implemented

our new technique in the termination prover AProVE [15]. In our experiments, we

coupled this termination tool with two different inductive theorem provers. One of

them was the well-known ACL2 system [24]. ACL2 is a very powerful theorem prover
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which also has strong support for automating induction. In general, ACL2’s proofs

have to be guided by the user who has to formulate appropriate lemmas. However,

our experiments indicate that the inductive conjectures that have to be verified for

termination proofs are usually not too complex and thus in our experiments, ACL2

could prove all of them fully automatically. In addition to the experiments with ACL2,

we also performed experiments where we used our “own” small inductive theorem

prover. This prover was inspired by existing tools [6,8,24,40,42,45] and had already

been implemented in AProVE before. Although this inductive theorem prover is less

powerful than the more elaborated full theorem provers like ACL2, it already sufficed

for those inductive arguments that were arising during the termination proofs in our

experiments. So the results of this paper indeed allow to couple any termination prover

implementing DPs with any inductive theorem prover.

A preliminary version of this paper was published in [37]. However, the present

paper extends [37] substantially (e.g., by a new self-contained proof for the equivalence

of many-sorted and unsorted innermost termination (Theorem 7), by the new Section

5.1 on the automation of our technique, by the new coupling of AProVE with ACL2

(Section 5.2) and new experiments in Section 5.3 to evaluate this coupling, and by

more examples and more detailed explanations throughout the paper).

2 Dependency Pairs

We assume familiarity with term rewriting [3] and briefly recapitulate the DP method.

See e.g. [2,14,16,20,21] for further motivations and extensions.

Definition 2 (Dependency Pairs) For a TRS R, the defined symbols DR are the

root symbols of left-hand sides of rules. All other function symbols are called construc-

tors. For every defined symbol f ∈ DR, we introduce a fresh tuple symbol f♯ with the

same arity. To ease readability, we often write F instead of f♯, etc. If t = f(t1, . . . , tn)

with f ∈ DR, we write t♯ for f♯(t1, . . . , tn). If ℓ → r ∈ R and t is a subterm of r with

defined root symbol, then the rule ℓ♯ → t♯ is a dependency pair of R. The set of all

dependency pairs of R is denoted DP(R).

For our running example Rsort, we obtain the following set DP(Rsort), where GE

is ge’s tuple symbol, etc.

GE(s(x), s(y)) → GE(x, y) (2)

EQL(s(x), s(y)) → EQL(x, y) (3)

MAX(add(x, add(y, xs))) → IF1(ge(x, y), x, y, xs) (4)

MAX(add(x, add(y, xs))) → GE(x, y) (5)

IF1(true, x, y, xs) → MAX(add(x, xs)) (6)

IF1(false, x, y, xs) → MAX(add(y, xs)) (7)

DEL(x, add(y, xs)) → IF2(eql(x, y), x, y, xs) (8)

DEL(x, add(y, xs)) → EQL(x, y) (9)

IF2(false, x, y, xs) → DEL(x, xs) (10)

SORT(add(x, xs)) → SORT(del(max(add(x, xs)), add(x, xs))) (11)

SORT(add(x, xs)) → DEL(max(add(x, xs)), add(x, xs)) (12)

SORT(add(x, xs)) → MAX(add(x, xs)) (13)
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In this paper, we only regard the innermost rewrite relation i→ and prove innermost

termination, since techniques for innermost termination are considerably more powerful

than those for full termination. For large classes of TRSs (e.g., TRSs resulting from

programming languages [18,36] or non-overlapping TRSs like Example 1), innermost

termination is sufficient for termination.

For two TRSs P and R (where P usually consists of DPs), an innermost (P ,R)-

chain is a sequence of (variable-renamed) pairs s1 → t1, s2 → t2, . . . from P such that

there is a substitution σ (with possibly infinite domain) where tiσ
i→∗
R si+1σ and siσ

is in normal form w.r.t. R, for all i.3 The main result on DPs states that R is innermost

terminating iff there is no infinite innermost (DP(R),R)-chain.

As an example for a chain, consider “(11), (11)”, i.e.,

SORT(add(x , xs )) → SORT(del(max(add(x , xs )), add(x , xs ))),

SORT(add(x′, xs′)) → SORT(del(max(add(x′, xs′)), add(x′, xs ′))).

Indeed, if σ(x) = σ(x′) = 0, σ(xs) = add(s(0), empty), and σ(xs′) = empty, then

SORT(del(max(add(x, xs)), add(x, xs)))σ i→!
Rsort

SORT(add(x′, xs ′))σ,

where “ i→!
Rsort

” denotes zero or more reduction steps to a normal form.

Termination techniques are now called DP processors and they operate on pairs of

TRSs (P ,R) (which are called DP problems).4 Formally, a DP processor Proc takes

a DP problem as input and returns a set of new DP problems which then have to

be solved instead. A processor Proc is sound if for all DP problems (P ,R) with an

infinite innermost (P ,R)-chain there is also a (P ′,R′) ∈ Proc( (P ,R) ) with an infinite

innermost (P ′,R′)-chain. Soundness of a DP processor is required to prove innermost

termination and in particular, to conclude that there is no infinite innermost (P ,R)-

chain if Proc( (P ,R) ) = ∅.

So innermost termination proofs in the DP framework start with the initial problem

(DP(R),R). Then the problem is simplified repeatedly by sound DP processors. If

all DP problems have been simplified to ∅, then innermost termination is proved.

Theorems 3-5 recapitulate three of the most important processors.

Theorem 3 allows us to replace the TRS R in a DP problem (P ,R) by the usable

rules. These include all rules that can be used to reduce the terms in right-hand sides

of P when their variables are instantiated with normal forms.

Theorem 3 (Usable Rule Processor [2,14]) Let R be a TRS. For any function

symbol f , let Rls(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any term t, the usable rules

U(t) are the smallest set such that

• U(x) = ∅ for every variable x and

• U(f(t1, . . . , tn)) = Rls(f) ∪
S

ℓ→r∈Rls(f) U(r) ∪
S

1≤i≤n U(ti)

For a TRS P, its usable rules are U(P) =
S

s→t∈P U(t). Then the following DP

processor Proc is sound: Proc( (P ,R) ) = { (P , U(P)) }.

3 All results of the present paper also hold if one regards minimal instead of ordinary
innermost chains, i.e., chains where all tiσ are innermost terminating.

4 To ease readability we use a simpler definition of DP problems than [14], since this simple
definition suffices for the presentation of the new results of this paper.
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In Example 1, this processor transforms the initial DP problem (DP(Rsort),Rsort)

into (DP(Rsort),R
′
sort). R

′
sort is Rsort without the two sort-rules, since sort does not

occur in the right-hand side of any DP and thus, its rules are not usable.

The next processor decomposes a DP problem into sub-problems. To this end, one

determines which pairs follow each other in innermost chains by constructing an inner-

most dependency graph. For a DP problem (P ,R), the nodes of the innermost depen-

dency graph are the pairs of P , and there is an arc from s → t to v → w iff s → t, v → w

is an innermost (P ,R)-chain. In our example, we obtain the following graph.
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In general, the innermost dependency graph is not computable, but there exist

many techniques to over-approximate this graph automatically, cf. e.g. [2,20,25]. In our

example, these estimations would even yield the exact innermost dependency graph.

A set P ′ 6= ∅ of DPs is a cycle if for every s→ t, v→w∈P ′, there is a non-empty

path from s → t to v → w traversing only pairs of P ′.5 A cycle P ′ is a (non-trivial)

strongly connected component (SCC) if P ′ is not a proper subset of another cycle. The

next processor allows us to prove termination separately for each SCC.

Theorem 4 (Dependency Graph Processor [2,14]) The following DP processor

Proc is sound: Proc( (P ,R) ) = {(P1,R), . . . , (Pn,R)}, where P1, . . . ,Pn are the SCCs

of the innermost dependency graph.

Our graph has the SCCs P1 = {(2)}, P2 = {(3)}, P3 = {(4), (6), (7)}, P4 =

{(8), (10)}, and P5 = {(11)}. Thus, (DP(Rsort),R
′
sort) is transformed into the five new

DP problems (Pi,R
′
sort) for 1 ≤ i ≤ 5 that have to be solved instead. For all problems

except ({(11)},R′
sort) this is easily possible by the DP processors of this section (and

this can also be done automatically by current termination tools). Therefore, we now

concentrate on the remaining DP problem ({(11)},R′
sort).

The following processor uses so-called reduction pairs to remove dependency pairs

from P . A reduction pair (%,≻) consists of a stable monotonic quasi-order % and a

stable well-founded order ≻, where % and ≻ are compatible (i.e., % ◦ ≻ ◦ % ⊆ ≻). For

a DP problem (P ,R), the processor requires that all DPs in P are strictly or weakly

decreasing and all rules R are weakly decreasing. Then one can delete all strictly

decreasing DPs. Note that both TRSs and relations can be seen as sets of pairs of

terms. Thus, P \≻ denotes {s → t ∈ P | s 6≻ t}.

5 Note that in standard graph terminology, a path n0 ⇒ n1 ⇒ . . . ⇒ nk in a directed graph
forms a cycle if n0 = nk and k ≥ 1. In our context, we identify cycles with the set of elements
that occur in it, i.e., we call {n0, n1, . . . , nk} a cycle [16].
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Theorem 5 (Reduction Pair Processor [2,14,20]) Let (%,≻) be a reduction pair.

Then the following DP processor Proc is sound.

Proc( (P ,R) ) =



{ (P \≻,R) }, if P ⊆ %∪ ≻ and R ⊆ %

{ (P ,R) }, otherwise

For the problem ({(11)},R′
sort), we search for a reduction pair where (11) is strictly

decreasing (w.r.t. ≻) and the rules in R′
sort are weakly decreasing (w.r.t. %). However,

this is not satisfied by the orders available in current termination tools.6 That is not

surprising, because termination of this DP problem essentially relies on the argument

(1) that every non-empty list contains its maximum.

Recall that our goal is to prove the absence of infinite innermost (P ,R)-chains.

Each such chain would correspond to a reduction of the following form

s1σ →P t1σ i→!
R s2σ →P t2σ i→!

R s3σ →P t3σ i→!
R . . .

where si → ti are variable-renamed DPs from P . The reduction pair processor ensures

s1σ (%) t1σ % s2σ (%) t2σ % s3σ (%) t3σ % . . .

Hence, strictly decreasing DPs (i.e., where siσ ≻ tiσ) cannot occur infinitely often in

innermost chains and thus, they can be removed from the DP problem.

However, instead of requiring a strict decrease when going from the left-hand side

siσ of a DP to the right-hand side tiσ, it would also be sufficient to require a strict

decrease when going from the right-hand side tiσ to the next left-hand side si+1σ. In

other words, if every reduction of tiσ to normal form makes the term strictly smaller

w.r.t. ≻, then we would have tiσ ≻ si+1σ. Hence, then the DP si → ti cannot occur

infinitely often and could be removed from the DP problem. Our goal is to formulate

a new processor based on this idea.

So essentially, we can remove a DP s → t from the DP problem, if

for every normal substitution σ, tσ i→!
R q implies tσ ≻ q. (14)

In addition, all DPs and rules still have to be weakly decreasing. A substitution σ is

called normal iff σ(x) is in normal form w.r.t. R for all variables x. Similarly, the term

tσ is called a normal instantiation of t iff σ is a normal substitution.

So to remove (11) from the remaining DP problem ({(11)},R′
sort) of Example 1

with the criterion above, we have to use a reduction pair satisfying (14). Here, t is the

right-hand side of (11), i.e., t = SORT(del(max(add(x, xs)), add(x, xs))).

3 Many-Sorted Rewriting

Now we will weaken the requirement (14) step by step to obtain a condition amenable

to automation. The current requirement (14) is still unnecessarily hard. For instance,

in our example we also have to regard substitutions like σ(x) = σ(xs) = true and

require that tσ ≻ q holds, although intuitively, here x stands for a natural number and

6 Most of these orders couple a (quasi-)simplification order with an argument filter. Due
to the collapsing if2-rule, one cannot filter away the second argument of del. But then the
left-hand side of the DP (11) is embedded in its right-hand side. Thus, all orders of this form
fail here.
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xs stands for a list (and not a Boolean value). We will show that one does not have to

require (14) for all normal substitutions, but only for “well-typed” ones. The reason is

that if there is an infinite innermost reduction, then there is also an infinite innermost

reduction of “well-typed” terms.

First, we make precise what we mean by “well-typed”. Recall that up to now we

regarded ordinary TRSs over untyped signatures F . The following definition shows

how to extend such signatures by (monomorphic) types, cf. e.g. [44].

Definition 6 (Typing) Let F be an (untyped) signature. A many-sorted signature

F ′ is a typed variant of F if it contains the same function symbols as F , with the same

arities. So f is a symbol of F with arity n iff f is a symbol of F ′ with a type of the

form τ1 × . . .× τn → τ . Similarly, a typed variant V ′ of the set of variables V contains

the same variables as V, but now every variable has a type τ . We always assume that

for every type τ , V ′ contains infinitely many variables of type τ . A term over F and V

is well typed w.r.t. F ′ and V ′ iff

• t is a variable (of some type τ in V ′) or

• t = f(t1, . . . , tn) with n ≥ 0, where all ti are well typed and have some type τi,

and where f has type τ1 × . . . × τn → τ in F ′. Then t has type τ .

We only permit typed variants F ′ where there exist well-typed ground terms of

types τ1, . . . , τn over F ′, whenever some f ∈ F ′ has type τ1 × . . . × τn → τ .7

A TRS R over8 F and V is well typed w.r.t. F ′ and V ′ if for all ℓ → r ∈ R, we

have that ℓ and r are well typed and that they have the same type.9

For any TRS R over a signature F , one can use a standard type inference algorithm

to compute a typed variant F ′ of F automatically such that R is well typed. Of course,

a trivial solution is to use a many-sorted signature with just one sort (then every term

and every TRS are trivially well typed). But to make our approach more powerful, it

is advantageous to use the most general typed variant where R is well typed instead.

Here, the set of terms is decomposed into as many types as possible. Then fewer terms

are considered to be “well typed” and hence, the condition (14) has to be required for

fewer substitutions σ.

For example, let F = {0, s, true, false, empty, add, ge, eql, max, if1, del, if2, SORT}. To

make {(11)} ∪ R′
sort well typed, we obtain the typed variant F ′ of F with the types

nat, bool, list, and tuple. Here the function symbols have the following types.

0 : nat ge, eql : nat × nat → bool

s : nat → nat max : list → nat

true, false : bool if1 : bool × nat × nat × list → nat

empty : list if2 : bool × nat × nat × list → list

add, del : nat × list → list SORT : list → tuple

Now we show that innermost termination is a persistent property, i.e., a TRS is

innermost terminating iff it is innermost terminating on well-typed terms. Here, one

can use any typed variant where the TRS is well typed. As noted by [30], persistence of

innermost termination follows from results of [34], but to our knowledge, it has never

7 This is not a restriction, as one can simply add new constants to F and F ′.
8 Note that F may well contain function symbols that do not occur in R.
9 W.l.o.g., here one may rename the variables in every rule. Then it is not a problem if the

variable x is used with type τ1 in one rule and with type τ2 in another rule.
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been explicitly stated or applied in the literature before. In the following, we give a new

(alternative) self-contained proof. Note that in contrast to innermost termination, full

termination is only persistent for very restricted classes of TRSs, cf. [44]. To illustrate

this, consider the famous TRS f(a, b, x) → f(x, x, x), g(x, y) → x, g(x, y) → y of [39].

If one uses a typed variant where a, b, and the arguments of f have a different type than

the arguments and the result of g, then the TRS is terminating on all well-typed terms.

In contrast, when ignoring the types, then the f-rule is obviously not terminating when

instantiating x with g(a, b).

Theorem 7 (Persistence) Let R be a TRS over F and V and let R be well typed

w.r.t. the typed variants F ′ and V ′. R is innermost terminating for all well-typed terms

w.r.t. F ′ and V ′ iff R is innermost terminating (for all terms).

Proof For every (not necessarily well-typed) term t, we define its result type r(t):

r(x) = ρ, if x is of type ρ r(f(t1, . . . , tn)) = ρ, if f is of type ρ1 × . . . × ρn → ρ

Moreover, a term t is called semi-well typed iff there is no type conflict on any path

from the root to redexes. Formally, t is semi-well typed iff

• t is a variable or

• t = f(t1, . . . , tn) for a symbol f of type ρ1× . . .×ρn → ρ, and for every ti we have:

– ti is in normal form or

– ti is semi-well typed and r(ti) = ρi.

We first prove the following claim:

If t is semi-well typed and t i→R s,

then s is also semi-well typed and if s is no normal form, then r(s) = r(t).
(15)

We use induction on the position where the reduction t i→R s takes place. If the

reduction is on the root position, then t = ℓσ and s = rσ for some rule ℓ → r from R.

Since r is well typed and σ instantiates all variables of r by normal forms due to the

innermost strategy, rσ is semi-well typed. Moreover, if rσ is no normal form, then r is

not a variable and thus, r(rσ) = r(ℓσ), since ℓ and r have the same type.

In the induction step, let the reduction take place on a position i π. Thus, t =

f(t1, . . . , ti, . . . , tn), s = f(t1, . . . , si, . . . , tn) for some symbol f of type ρ1×. . .×ρn → ρ

where ti
i→R si, ti is semi-well typed, and r(ti) = ρi. By the induction hypothesis,

si is also semi-well typed and if si is no normal form, then r(si) = r(ti) = ρi. This

implies that s is semi-well typed as well. Moreover, obviously r(s) = r(t) = ρ.

To use the claim (15) for the proof of Theorem 7, for any (not necessarily well-

typed) term t and any type τ , we define the term w(t, τ ) which transforms t into a

well-typed term of type τ . To this end, whenever there is a topmost subterm s of t

which destroys the well-typedness (i.e., s occurs at a position where a term of type ρ

is expected, but s does not have type ρ), then s is replaced by a corresponding new

variable ys,ρ of type ρ. More precisely, for any variable x of type ρ and any function

symbol f of type ρ1 × . . . × ρn → ρ we define:

w(x, τ) =



x if τ = ρ
yx,τ otherwise

w(f(t1, ..., tn), τ) =



f(w(t1, ρ1), ...,w(tn, ρn)) if τ = ρ
yf(t1,...,tn),τ otherwise

Now we show the following claim:

If t is semi-well typed, t i→R s, and r(t) = τ , then we have w(t, τ ) i→R w(s, τ ). (16)
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Note that (15) and (16) imply the theorem: If there is a (not necessarily well-

typed) term with infinite innermost reduction, then there is also a minimal such term

(i.e., all its proper subterms are innermost terminating). Hence, its infinite innermost

reduction contains a root reduction step. So there exists a (not necessarily well-typed)

term t which starts an infinite innermost reduction where the first reduction step is at

the root. Hence, t is semi-well typed since t is a (well-typed) left-hand side of a rule

where all variables are instantiated by normal forms due to the innermost strategy. By

(15), this implies that there is an infinite innermost reduction of semi-well typed terms

t i→R t1
i→R t2

i→R . . .

and by (16), this results in an infinite reduction of well-typed terms where r(t) = τ :

w(t, τ ) i→R w(t1, τ ) i→R w(t2, τ ) i→R . . .

It remains to prove (16) by induction on the position of the reduction t i→R s. If

the reduction is on the root position, then we have t = ℓσ and s = rσ for some rule

ℓ → r from R and some normal substitution σ. For every variable x, let σ′ be the

substitution with σ′(x) = w(xσ, ρ) where ρ is the type of the variable x. Since ℓ and r

are well typed and of type τ , we have w(ℓσ, τ ) = ℓσ′ and w(rσ, τ ) = rσ′. This implies

w(t, τ ) = ℓσ′ i→R rσ′ = w(s, τ ).

In the induction step, let the reduction take place on a position i π. Thus, we have

t = f(t1, . . . , ti, . . . , tn), s = f(t1, . . . , si, . . . , tn) for some function symbol f of type

ρ1 × . . . × ρn → ρ where ti
i→R si, ti is semi-well typed, and r(ti) = ρi. By the in-

duction hypothesis, we obtain w(t, τ ) = f(w(t1, ρ1), . . . ,w(ti, ρi), . . . ,w(tn, ρn)) i→R

f(w(t1, ρ1), . . . ,w(si, ρi), . . . ,w(tn, ρn)) = w(s, τ ). ⊓⊔

We expect that there exist several points where Theorem 7 could simplify innermost

termination proofs.10 In this paper, we use Theorem 7 to weaken the condition (14)

required to remove a DP from a DP problem (P ,R). Now one can use any typed

variant where P ∪ R is well typed. To remove s → t from P , it suffices if

for every normal σ where tσ is well typed, tσ i→!
R q implies tσ ≻ q. (17)

4 Coupling Dependency Pairs and Inductive Theorem Proving

Condition (17) is still too hard, because up to now, tσ does not have to be ground. We

will show (in Theorem 12) that for DP problems (P ,R) satisfying suitable non-over-

lappingness requirements and where R is already innermost terminating, (17) can be

relaxed to ground substitutions σ. Then s → t can be removed from P if

for every normal substitution σ where tσ is a well-typed ground term,

tσ i→!
R q implies tσ ≻ q.

(18)

Example 8 Innermost termination of R is really needed to replace (17) by (18). To see

this, consider the DP problem (P ,R) with P = {F(x) → F(x)} and the non-innermost

terminating TRS R = {a → a}.11 Let F = {F, a}. We use a typed variant F ′ where

10 For example, by Theorem 7 one could switch to termination methods like [28] exploiting
types.
11 One cannot assume that DP problems (P,R) always have a specific form, e.g., that P

includes A → A whenever R includes a → a. The reason is that a DP problem (P,R) can
result from arbitrary DP processors that were applied before. Hence, one really has to make
sure that processors are sound for arbitrary DP problems (P,R).
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F : τ1 → τ2 and a : τ1 for two different types τ1 and τ2. For the right-hand side

t = F(x) of the DP, the only well-typed ground instantiation is F(a). Since this term

has no normal form q, the condition (18) holds. Nevertheless, it is not sound to remove

the only DP from P , since F(x1) → F(x1), F(x2) → F(x2), . . . is an infinite innermost

(P ,R)-chain (but there is no infinite innermost ground chain).

To see the reason for the non-overlappingness requirement, consider (P ,R) with

P = {F(f(x)) → F(f(x))} and R = {f(a) → a} where the left-hand sides of the rules in

P and R overlap. Now F = {F, f, a} and in the typed variant we have F : τ1 → τ2, f :

τ1 → τ1, and a : τ1 for two different types τ1 and τ2. For the right-hand side t = F(f(x))

of the DP, the only well-typed ground instantiations are F(fn(a)) with n ≥ 1. If we take

the embedding order ≻emb, then all well-typed ground instantiations of t are ≻emb-

greater than their normal form F(a). So Condition (18) would allow us to remove the

only DP from P . But again, this is unsound, since there is an infinite innermost (P ,R)-

chain (but no such ground chain). In addition, the non-overlappingness requirement

will also be needed later on in order to transform Condition (18) into a condition that

can be checked by an inductive theorem prover (cf. Footnote 13).

To prove a condition like (18), we replace (18) by the following condition (19),

which is easier to check. Here, we require that for all instantiations tσ as above, every

reduction of tσ to its normal form uses a strictly decreasing rule ℓ → r (i.e., a rule

with ℓ ≻ r) on a strongly monotonic position π. A position π in a term u is strongly

monotonic w.r.t. ≻ iff t1 ≻ t2 implies u[t1]π ≻ u[t2]π for all terms t1 and t2. So to

remove s → t from P , now it suffices if

for every normal substitution σ where tσ is a well-typed ground term, every

reduction “tσ i→!
R q” has the form

tσ i→∗
R u[ℓδ]π

i→R u[rδ]π
i→!
R q

for a rule ℓ → r ∈ R where ℓ ≻ r

and where the position π in u is strongly monotonic w.r.t. ≻.12

(19)

For example, for Rsort’s termination proof one may use a reduction pair (%,≻)

based on a polynomial interpretation [4,12,27]. A polynomial interpretation Pol maps

every n-ary function symbol f to a polynomial fPol over n variables x1, . . . , xn with

coefficients from N. This mapping is extended to terms by [x]Pol = x for all variables

x and [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol). Now s ≻Pol t (resp. s %Pol t) iff

[s]Pol > [t]Pol (resp. [s]Pol ≥ [t]Pol) holds for all instantiations of the variables with

natural numbers. For instance, consider the interpretation Pol1 with

0Pol1 = emptyPol1 = truePol1 = falsePol1 = gePol1 = eqlPol1 = 0 sPol1 = 1 + x1

addPol1 = 1 + x1 + x2 maxPol1 = x1

if1Pol1 = 1 + x2 + x3 + x4 delPol1 = x2

if2Pol1 = 1 + x3 + x4 SORTPol1 = x1

12 In special cases, Condition (19) can be automated by k-times narrowing the DP s → t
[16]. However, this only works if for any substitution σ, the reduction tσ i→∗

R
u[ℓδ]π is shorter

than a fixed number k. So it fails for TRSs like Rsort where termination relies on an inductive
property. Here, the reduction

SORT(del(max(add(x, xs)), add(x, xs)))σ i→∗
Rsort

SORT(if2(true, . . . , . . . , . . .))

can be arbitrarily long, depending on σ. Therefore, narrowing the DP (11) a fixed number of
times does not help.
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When using the reduction pair (%Pol1 ,≻Pol1), the DP (11) and all rules of R′
sort

are weakly decreasing. Moreover, then Condition (19) is indeed satisfied for the right-

hand side t of (11). To see this, note that in every reduction tσ i→!
R q where tσ is a

well-typed ground term, eventually one has to apply the rule “if2(true, x, y, xs) → xs”

which is strictly decreasing w.r.t. ≻Pol1 . This rule is used by the del-algorithm to delete

an element, i.e., to reduce the length of the list. Moreover, the rule is used within

a context of the form SORT(add(..., add(..., . . . add(..., �) . . .))). The polynomials

SORTPol1 and addPol1 are strongly monotonic in their first resp. second argument.

Thus, the strictly decreasing rule is indeed used on a strongly monotonic position.

To check automatically whether every reduction of tσ to normal form uses a strictly

decreasing rule on a strongly monotonic position, we add new rules and function sym-

bols to the TRS R which results in an extended TRS R≻. Moreover, for every term u

we define a corresponding term u≻. For non-overlapping TRSs R, we have the follow-

ing property, cf. Lemma 10: if u≻ i→∗
R≻ tt, then for every reduction u i→!

R q, we have

u ≻ q. We now explain how to construct R≻.

For every f ∈ DR, we introduce a new symbol f≻. Now f≻(u1, ..., un) should

reduce to tt in the new TRS R≻ whenever the reduction of f(u1, ..., un) in the original

TRS R uses a strictly decreasing rule on a strongly monotonic position. Thus, if a

rule f(ℓ1, ..., ℓn) → r of R was strictly decreasing (i.e., f(ℓ1, ..., ℓn) ≻ r), then we

add the rule f≻(ℓ1, ..., ℓn) → tt to R≻.13 Otherwise, a strictly decreasing rule will be

used on a strongly monotonic position to reduce an instance of f(ℓ1, . . . , ℓn) if this

holds for the corresponding instance of the right-hand side r. Hence, then we add the

rule f≻(ℓ1, ..., ℓn) → r≻ to R≻ instead. It remains to define u≻ for any term u over

the signature of R. If u = f(u1, ..., un), then we regard the subterms on the strongly

monotonic positions of u and check whether their reduction uses a strictly decreasing

rule. For any n-ary symbol f , let mon≻(f) contain those positions from {1, . . . , n}

where the term f(x1, ..., xn) is strongly monotonic. If mon≻(f) = {i1, . . . , im}, then

for u = f(u1, ..., un) we obtain u≻ = u≻
i1
∨ . . .∨u≻

im
, if f is a constructor. If f is defined,

then a strictly decreasing rule could also be applied on the root position of u. Hence,

then u≻ = u≻
i1

∨ . . . ∨ u≻
im

∨ f≻(u1, ..., un). Of course, R≻ also contains appropriate

rules for the disjunction “∨”.14 The empty disjunction is represented by ff.

Definition 9 (R≻) Let ≻ be an order on terms and let R be a TRS over F and V.

We extend F to a new signature F≻ = F ⊎ {f≻ | f ∈ DR} ⊎ {tt, ff,∨}. For any term

u over F and V, we define the term u≻ over F≻ and V:

u≻ =

8

>

<

>

:

W

i∈mon≻(f) u≻
i , if u = f(u1, . . . , un) and f /∈ DR

W

i∈mon≻(f) u≻
i ∨ f≻(u1, . . . , un), if u = f(u1, . . . , un) and f ∈ DR

ff, if u ∈ V

Moreover, we define R≻ = {f≻(ℓ1, ..., ℓn) → tt | f(ℓ1, ..., ℓn) → r ∈ R ∩≻}

∪ {f≻(ℓ1, ..., ℓn) → r≻ | f(ℓ1, ..., ℓn) → r ∈ R \ ≻}

∪ R ∪ {tt ∨ b → tt, ff ∨ b → b}.

In our example, the only rules of R′
sort which are strictly decreasing w.r.t. ≻Pol1

are the last two max-rules and the rule “if2(true, x, y, xs) → xs”. So according to

13 Of course, this is only sound for non-overlapping TRSs. To see this, consider the TRS
R = {a → b, a → c} with a ≻ b and a 6≻ c. Now R≻ would contain the rule a≻ → tt although
there is a reduction of a to a normal form c that is not ≻-smaller than a.
14 It suffices to include just the rules “tt ∨ b → tt” and “ff ∨ b → b”, since R≻ is only used

for inductive proofs and “b ∨ tt = tt” and “b ∨ ff = b” are inductive consequences.
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Definition 9, the TRS R′≻Pol1
sort contains R′

sort ∪ {tt ∨ b → tt, ff ∨ b → b} and the

following rules. Here, we already simplified disjunctions of the form “ff ∨ t” or “t ∨ ff”

to t.15 To ease readability, we wrote “ge≻” instead of “ge≻Pol1 ”, etc.

ge
≻(x, 0) → ff

ge
≻(0, s(y)) → ff

ge
≻(s(x), s(y)) → ge

≻(x, y)

eql
≻(0, 0) → ff

eql
≻(s(x), 0) → ff

eql
≻(0, s(y)) → ff

eql
≻(s(x), s(y)) → eql

≻(x, y)

max
≻(empty) → ff

max
≻(add(x, empty)) → tt

max
≻(add(x, add(y, xs))) → tt

if
≻
1 (true, x, y, xs) → max

≻(add(x, xs))

if
≻
1 (false, x, y, xs) → max

≻(add(y, xs))

del
≻(x, empty) → ff

del
≻(x, add(y, xs)) → if

≻
2 (eql(x, y), x, y, xs)

if
≻
2 (true, x, y, xs) → tt

if
≻
2 (false, x, y, xs) → del

≻(x, xs)

Lemma 10 (Soundness of R≻) Let (%,≻) be a reduction pair and let R be a non-

overlapping TRS over F and V with R ⊆ %. For any terms u and q over F and V with

u≻ i→∗
R≻ tt and u i→!

R q, we have u ≻ q.

Proof We use induction on the lexicographic combination of the length of the reduction

u i→!
R q and of the structure of u.

First let u be a variable. Here, u≻ = ff and thus, u≻ i→∗
R≻ tt is impossible.

Now let u = f(u1, ..., un). The reduction u i→!
R q starts with u = f(u1, ..., un)

i→∗
R f(q1, ..., qn) where the reductions ui

i→!
R qi are at most as long as u i→!

R q. If

there is a j ∈ mon≻(f) with u≻
j

i→∗
R≻ tt, then uj ≻ qj by induction hypothesis. So

u=f(u1, ..., uj , ..., un)≻f(u1, ..., qj , ..., un)%f(q1, ..., qj , ..., qn)% q, as R⊆%.

Otherwise, u≻ i→∗
R≻ tt means that f≻(u1, . . . , un) i→∗

R≻ tt. As R ⊆ R≻, we

have f≻(u1, . . . , un) i→∗
R≻ f≻(q1, . . . , qn). Since R is non-overlapping, R≻ is non-

overlapping as well. This implies confluence of i→R≻ , cf. [33]. Hence, we also get

f≻(q1, . . . , qn) i→∗
R≻ tt. There is a rule f(ℓ1, . . . , ℓn) → r ∈ R and a normal sub-

stitution δ with f(q1, . . . , qn) = f(ℓ1, . . . , ℓn)δ i→R rδ i→!
R q. Note that the qi only

contain symbols of F . Thus, as the qi are normal forms w.r.t. R, they are also normal

forms w.r.t. R≻. Therefore, as R≻ is non-overlapping, the only rule of R≻ applicable

15 By this simplification, all disjunctions can be eliminated in this example. This would be
different for rules with right-hand sides r that contain subterms of the form “f(. . . g(. . .) . . .)”,
where both f and g are defined symbols and where g(. . .) occurs on a strongly monotonic
position of r.
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to f≻(q1, . . . , qn) is the one resulting from f(ℓ1, . . . , ℓn) → r ∈ R. If f(ℓ1, . . . , ℓn) ≻ r,

then that rule would be “f≻(ℓ1, . . . , ℓn) → tt” and

u = f(u1, . . . , un) % f(q1, . . . , qn) = f(ℓ1, . . . , ℓn)δ ≻ rδ % q.

Otherwise, the rule is “f≻(ℓ1, ..., ℓn) → r≻”, i.e., f≻(q1, ..., qn) = f≻(ℓ1, ..., ℓn)δ i→R≻

r≻δ i→∗
R≻ tt. Since the reduction rδ i→!

R q is shorter than the original reduction

u i→!
R q, the induction hypothesis implies rδ ≻ q. Thus,

u = f(u1, . . . , un) % f(q1, . . . , qn) = f(ℓ1, . . . , ℓn)δ % rδ ≻ q. ⊓⊔

With Lemma 10, the condition (19) needed to remove a DP from a DP problem

can again be reformulated. To remove s → t from P , now it suffices if

for every normal substitution σ where tσ is a well-typed ground term, we

have t≻σ i→∗
R≻ tt.

(20)

So in our example, to remove the DP (11) using the reduction pair (%Pol1 ,≻Pol1),

we require “t≻Pol1 σ i→∗

R′
≻Pol1

sort

tt”, where t is the right-hand side of (11), i.e.,

t = SORT(del(max(add(x, xs)), add(x, xs))).

Since mon≻Pol1
(SORT) = {1}, mon≻Pol1

(del) = {2}, mon≻Pol1
(add) = {1, 2}, and

x≻Pol1 = xs≻Pol1 = ff, we have

t≻Pol1 = del
≻Pol1 (max(add(x, xs)), add(x, xs))

when simplifying disjunctions with ff. So to remove (11), we require the following for

all normal substitutions σ where tσ is well typed and ground.16

del
≻Pol1 (max(add(x, xs)), add(x, xs))σ i→∗

R′
≻Pol1

sort

tt (21)

Note that the rules for del≻Pol1 (given before Lemma 10) compute the member-

function. In other words, del≻Pol1 (x, xs) holds iff x occurs in the list xs . Thus, (21) is

equivalent to the main termination argument (1) of Example 1, i.e., to the observation

that every non-empty list contains its maximum. Thus, now we can detect and express

termination arguments like (1) within the DP framework.

Our goal is to use inductive theorem provers to verify arguments like (1) or, equiv-

alently, to verify conditions like (20). Indeed, (20) corresponds to the question whether

a suitable conjecture is inductively valid [5,6,8,9,22,24,40,42,45].

Definition 11 (Inductive Validity) Let R be a TRS and let s, t be terms over F

and V. We say that t = s is inductively valid in R (denoted R |=ind t = s) iff there

exist typed variants F ′ and V ′ such that R, t, s are well typed where t and s have the

same type, and such that tσ i↔∗
R sσ holds for all substitutions σ over F ′ where tσ and

sσ are well-typed ground terms. To make the specific typed variants explicit, we also

write “R |=F ′,V′

ind t = s”.

Of course, in general R |=ind t = s is undecidable, but it can often be proved

automatically by inductive theorem provers. By reformulating Condition (20), we now

obtain that in a DP problem (P ,R), s → t can be removed from P if

16 Note that the restriction to well-typed ground terms is crucial. Indeed, (21) does not hold
for non-ground or non-well-typed substitutions like σ(x) = σ(xs) = true.
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R≻ |=ind t≻ = tt. (22)

Of course, in addition all DPs in P and all rules in R have to be weakly decreasing.

Now we formulate a new DP processor based on Condition (22). Recall that to

derive (22) we required a non-overlappingness condition and innermost termination of

R. (These requirements ensure that it suffices to regard only ground instantiations when

proving that reductions of tσ to normal form are strictly decreasing, cf. Example 8.

Moreover, non-overlappingness is needed for Lemma 10 to make sure that t≻σ i→∗
R≻ tt

really guarantees that all reductions of tσ to normal form are strictly decreasing, cf.

Footnote 13. Non-overlappingness also ensures that t≻σ i→∗
R≻ tt in Condition (20) is

equivalent to t≻σ i↔∗
R≻ tt in Condition (22).)

So innermost termination of R is a condition needed to apply the new induction

processor. Of course, innermost termination of R can again be checked by the DP

framework. Therefore, in the following processor, we use a formulation where a DP

problem (P ,R) is transformed into two new problems. Apart from the new DP prob-

lem (P \ {s → t},R), the processor also generates the problem (DP (R),R). Absence

of infinite innermost (DP (R),R)-chains is equivalent to innermost termination of R.

Note that in practice R only contains the usable rules of P (since one should have ap-

plied the usable rule processor of Theorem 3 before). Then the DP problem (DP (R),R)

means that the TRS consisting just of the usable rules must be innermost terminat-

ing. An application of the dependency graph processor of Theorem 4 will therefore

transform (DP (R),R) into DP problems that have already been generated before. So

(except for algorithms with nested or mutually recursive usable rules), the DP problem

(DP (R),R) obtained by the following processor does not lead to new proof obligations.

In Theorem 12, we restrict ourselves to DP problems (P ,R) with the tuple property.

This means that for all s → t ∈ P , root(s) and root(t) are tuple symbols and tuple

symbols neither occur anywhere else in s or t nor in R. This is always satisfied for the

initial DP problem and it is maintained by almost all DP processors in the literature

(including all processors of this paper).

Theorem 12 (Induction Processor) Let (%,≻) be a reduction pair with P∪R ⊆ %,

let (P ,R) have the tuple property where R is non-overlapping and where there are no

critical pairs between R and P.17 Let F ′, V ′ be typed variants of P ∪ R’s signature

such that P ∪ R is well typed. Finally, let s → t ∈ P with R≻ |=F ′,V′

ind t≻ = tt. Then

the following DP processor Proc is sound.

Proc( (P ,R) ) = { (P \ {s → t}, R), (DP(R), R) }

Proof Suppose that there is an infinite innermost (P ,R)-chain, i.e., that P ∪R is not

innermost terminating. By persistence of innermost termination (Theorem 7), there is a

well-typed term that is not innermost terminating w.r.t. P∪R. Let q be a minimal such

term (i.e., q’s proper subterms are innermost terminating). Due to the tuple property,

w.l.o.g. q either contains no tuple symbol or q contains a tuple symbol only at the root.

In the first case, only R-rules can reduce q. Thus, R is not innermost terminating and

there is an infinite innermost (DP(R), R)-chain.

Now let R be innermost terminating. So root(q) is a tuple symbol and q contains no

further occurrences of tuple symbols. Hence, in q’s infinite innermost P ∪R-reduction,

R-rules are only applied below the root and P-rules are only applied on the root

17 More precisely, for all v → w in P, non-variable subterms of v may not unify with left-hand
sides of rules from R (after variable renaming).
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position. Moreover, there are infinitely many P-steps. Hence, this infinite reduction

corresponds to an infinite innermost (P ,R)-chain s1 → t1, s2 → t2, . . . where tiσ
i→!
R

si+1σ for all i and all occurring terms are well typed.

Next we show that due to innermost termination of R, there is even an infinite

innermost (P ,R)-chain on well-typed ground terms. As shown by Example 8, this

step would not hold without innermost termination of R. In other words, if R is not

innermost terminating, then the existence of an infinite innermost (P ,R)-chain does

not imply the existence of an infinite innermost (P ,R)-chain on ground terms. Let δ

instantiate all variables in s1σ by ground terms of the corresponding type. (Recall that

in any typed variant there are such ground terms.) We define the normal substitution σ′

such that σ′(x) is the R-normal form of xσδ for all variables x. This normal form must

exist since R is innermost terminating and it is unique since R is non-overlapping.

Clearly, tiσ
i→∗
R si+1σ implies tiσδ →∗

R si+1σδ, i.e., tiσ
′ →∗

R si+1σ′. As left-hand

sides si of DPs do not overlap with rules of R, all siσ
′ are in normal form. Due to non-

overlappingness of R, si+1σ′ is the only normal form of tiσ
′ and thus, it can also be

reached by innermost steps, i.e., tiσ
′ i→!

R si+1σ′. Hence, there is an infinite innermost

(P ,R)-chain on well-typed ground terms.

If this chain does not contain infinitely many variable-renamed copies of the DP

s → t, then its tail is an infinite innermost (P \ {s → t}, R)-chain. Otherwise, si1 →

ti1 , si2 → ti2 , . . . are variable-renamed copies of s → t and thus, ti1σ′, ti2σ′, . . . are well-

typed ground instantiations of t. As R≻ |=ind t≻ = tt, we have (tij
σ′)≻ = t≻ij

σ′ i→∗
R≻

tt for all j. Since tij
σ′ i→!

R sij+1σ′, Lemma 10 implies tij
σ′ ≻ sij+1σ′ for all (infinitely

many) j. Moreover, siσ
′ % tiσ

′ and tiσ
′ % si+1σ′ for all i, since P ∪ R ⊆ %. This

contradicts the well-foundedness of ≻. ⊓⊔

In our example, we ended up with the DP problem ({(11)},R′
sort). To remove the

DP (11) from the DP problem, we use an inductive theorem prover to prove

R′≻Pol1
sort |=ind del

≻Pol1 (max(add(x, xs)), add(x, xs)) = tt, (23)

i.e., that every non-empty list contains its maximum. The tuple property and the non-

overlappingness requirements in Theorem 12 are clearly fulfilled. Moreover, all rules

decrease w.r.t. %Pol1 . Hence, the induction processor results in the trivial problem

(∅,R′
sort) and the problem (DP(R′

sort),R
′
sort) = ({(2), ..., (10)},R′

sort). The depen-

dency graph processor transforms the latter problem into the problems (Pi,R
′
sort)

with 1 ≤ i ≤ 4 that had already been solved before, cf. Section 2. For example, both

ACL2 and the inductive theorem prover included in AProVE prove (23) automatically.

Thus, now AProVE can easily verify termination of the TRS Rsort.

5 Automation

In Section 5.1, we present a method to automate the processor of Theorem 12. Af-

terwards, Section 5.2 discusses how to couple a termination prover like AProVE with

inductive theorem provers like ACL2. Finally, experimental results are presented in

Section 5.3.

5.1 Generating Orders

In order to automate the new processor of Theorem 12 one has to synthesize a suitable
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reduction pair (%,≻) such that R≻ |=F
′,V′

ind t≻ = tt holds for some dependency pair

s → t from P . Moreover, both P and R have to be weakly decreasing w.r.t. %.

In the last years, several techniques have been developed to search for reduction

pairs satisfying a given set of inequalities between terms. Typically, one chooses a

specific family of orders (e.g., recursive path orders with argument filters [35], Knuth-

Bendix orders with argument filters [43], polynomial or matrix orders of a certain

shape and a certain range for the coefficients [11,12], etc.). Then the search problem is

encoded into a SAT problem and an existing SAT solver is used to generate a reduction

pair satisfying the term inequalities.

However, for the induction processor one should choose a reduction pair such that

for some DP s → t the resulting conjecture t≻ = tt will be inductively valid. Of course,

this can hardly be expressed by simple inequalities between terms.

Therefore, we use the following approach for the automation. Recall that inductive

validity of t≻ = tt implies that in every innermost reduction of a normal instantiation

tσ to normal form, a strictly decreasing rule ℓ → r is applied on a strongly monotonic

position. By the definition of usable rules, U(t) contains all rules that can be applied in

innermost reductions of normal instantiations of t. Hence, ℓ → r must be from U(t). In

other words, if we want to find a reduction pair where t≻ = tt is inductively valid, then

we can restrict ourselves to reduction pairs where ℓ ≻ r holds for some ℓ → r ∈ U(t).

To restrict the search space for suitable reduction pairs further, we also take into

account that the position where the strictly decreasing rule ℓ → r is applied must be

strongly monotonic. For any function symbol f , let almon(t, f) be a set of constraints

which ensures that whenever an f -rule is applied in the reduction of a normal instan-

tiation of t, then this application always takes place on a strongly monotonic position.

Then we will only search for reduction pairs where there exist a DP s → t and a rule

ℓ → r ∈ U(t) such that ℓ ≻ r and such that the constraints almon(t, root(ℓ)) hold.

Moreover, the reduction pair should of course orient all DPs in P and all rules in R

weakly. So to automate the induction pair processor for a DP problem (P ,R) as in

Theorem 12, we search for a reduction pair satisfying the following constraint.

^

ℓ→r ∈R

ℓ % r ∧
^

s→t∈P

s % t ∧
_

s→t∈P

_

ℓ→r ∈U(t)

0

@ℓ ≻ r ∧
^

ϕ ∈ almon(t,root(ℓ))

ϕ

1

A (24)

This constraint can be encoded into a propositional formula using existing tech-

niques [11,12,35,43]. If a SAT solver finds a satisfying assignment for the propositional

variables, then this solution corresponds to a reduction pair satisfying (24). Thus, for

this reduction pair there exist a DP s → t ∈ P and a rule ℓ → r ∈ U(t) such that ℓ ≻ r

and all constraints in almon(t, root(ℓ)) are true. Now we use an inductive theorem

prover to prove R≻ |=F ′,V′

ind t≻ = tt for the most general typed variant F ′,V ′ where

P ∪R is well typed. If this proof succeeds, we can remove s → t from the set of DPs P

and obtain the new DP problems (P \ {s → t},R) and (DP (R),R) as in Theorem 12.

In a full termination prover (like AProVE), the induction processor should of course

only be used if simple and fast other DP processors cannot be applied anymore. In these

cases, we check whether (24) is satisfied and only then, the inductive theorem prover is

called. This turned out to be a successful strategy in our experiments, cf. Section 5.3.

In other words, the induction processor was applied whenever it was needed and we

did not waste much time by trying to apply it in examples where it was not needed.

Note that the approach to use only reduction pairs satisfying (24) is just a heuristic.

In other words, t≻ = tt could be inductively valid although there is no strictly decreas-
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ing rule ℓ → r in U(t) where all constraints from almon(t, root(ℓ)) hold. For example,

it could be that not all applications of ℓ → r are on strongly monotonic positions, but

nevertheless in every reduction of a normal instantiation of t, there is some application

of ℓ → r on a strongly monotonic position. For instance, suppose that in our example,

we replaced the rule

sort(add(x, xs)) → add(max(add(x, xs)), sort(del(max(add(x, xs)), add(x, xs))))

by the following rule where we added another application of del (which we underlined

for readability):

sort(add(x, xs)) → add(max(add(x, xs)), sort(del(max(add(x, del(x,xs) )), add(x, xs))))

In the right-hand side t of the resulting SORT-DP, now there would also be an oc-

currence of del in the first argument of the original outer del. However, del’s first

argument position is not strongly monotonic if one uses the polynomial order ≻Pol1 .

Consequently, the strictly decreasing if2-rule would now be applied both on a strongly

monotonic position and on a position that is not strongly monotonic. Hence, the con-

straints in almon(t, if2) would not hold although t≻ = tt would be inductively valid as

before.

It remains to explain how the constraints almon(t, f) in (24) are constructed for

arbitrary terms t and function symbols f . In the following definition, Invokes(f) are

all terms t whose usable rules include f -rules. Thus, Invokes(f) is an approximation

(i.e., a superset) of all those terms t where an f -rule could be used when rewriting

some normal instantiation tσ to normal form. Now almon(t, f) is a set of monotonicity

constraints of the form “i ∈ mon≻(g)”. As before, such a constraint means that the i-th

argument position of g is strongly monotonic w.r.t. the order ≻. Suppose that t has the

form g(t1, . . . , tn) and we want to construct the constraints for almon(t, f). Clearly, if

a subterm ti can lead to the application of an f -rule (i.e., if ti ∈ Invokes(f)), then one

has to require i ∈ mon≻(g) and almon(ti, f). Moreover, one also requires almon(r, f)

for all right-hand sides r of g-rules that could lead to an application of an f -rule (i.e.,

right-hand sides r where r ∈ Invokes(f)).

Definition 13 (almon) For any function symbol f , let Invokes(f) be the set of all

terms t where U(t)∩Rls(f) 6= ∅. For any term t = g(t1, . . . , tn), we define almon(t, f)

as the smallest set such that

almon(g(t1, . . . , tn), f) =
S

ℓ→r∈Rls(g), r∈Invokes(f) almon(r, f)

∪
S

1≤i≤n, ti∈Invokes(f) ( {i ∈ mon≻(g)} ∪ almon(ti, f) )

As an example, consider the term t = SORT(del(max(add(x, xs)), add(x, xs))) from

our leading example. To make sure that all reductions with the strictly decreasing if2-

rule take place on strictly monotonic positions, we would require almon(t, if2). This is

the following set of constraints:

almon(t, if2)

= {1 ∈ mon≻(SORT)} ∪

almon(del(max(add(x, xs)), add(x, xs)), if2) since del(. . .) ∈ Invokes(if2)

= {1 ∈ mon≻(SORT)} ∪ since the right-hand side of del’s

almon(if2(eql(x, y), x, y, xs), if2) second rule is in Invokes(if2)
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= {1 ∈ mon≻(SORT)} ∪ since the right-hand side of if2’s

almon(add(y,del(x, xs)), if2) second rule is in Invokes(if2)

= {1 ∈ mon≻(SORT), 2 ∈ mon≻(add)} ∪

almon(del(x, xs), if2) since del(. . .) ∈ Invokes(if2)

= {1 ∈ mon≻(SORT), 2 ∈ mon≻(add)}

These two monotonicity constraints are indeed satisfied for the polynomial order ≻Pol1 .

Encoding such monotonicity constraints into propositional formulas (in order to use

SAT solving for the overall constraint (24)) is easily possible.

The following lemma shows that our definition of almon is “sound”. In other words,

the truth of almon(t, f) indeed implies that for every normal instantiation of t, every

reduction with an f -rule takes place on a strongly monotonic position.

Lemma 14 (Soundness of almon) Let t be a term and σ be a normal substitution

such that tσ i→∗
R u[ℓδ]π

i→R u[rδ]π for a rule ℓ → r ∈ R. Let root(ℓ) = f and let all

constraints in almon(t, f) hold. Then π is a strongly monotonic position in the term u.

Proof We use induction on the lexicographic combination of the length of the reduction

from tσ to u[ℓδ]π and of the structure of t.

First regard the case where tσ = u[ℓδ]π. Since σ is a normal substitution, this

means root(t|π) = f and t|πσ = ℓδ. Here, we show the claim that if t contains f at

some position π and all constraints in almon(t, f) hold, then π is a strongly monotonic

position in t. This claim is easily proved by induction on π. If π is the top position,

then π is obviously strongly monotonic. Otherwise, if π = i π′, then t = g(t1, . . . , tn)

where ti ∈ Invokes(f). Thus, the truth of almon(t, f) implies i ∈ mon≻(g) and the

truth of almon(ti, f). Hence, π′ is strongly monotonic in ti by the induction hypothesis.

Together, this means that π is strongly monotonic in t.

Now regard the case where tσ 6= u[ℓδ]π and where none of the reduction steps

in tσ i→+
R

u[ℓδ]π takes place at the root. Hence, we have t = g(t1, . . . , tn), u =

g(u1, . . . , un), and π = i π′ for some 1 ≤ i ≤ n. Thus, ti ∈ Invokes(f) and the truth

of almon(t, f) implies i ∈ mon≻(g) and the truth of almon(ti, f). Since the reduction

from tiσ to ui[ℓδ]π′ is at most as long as the reduction from tσ to u[ℓδ]π and as ti is a

proper subterm of t, by the induction hypothesis π′ is a strongly monotonic position

in ui and thus, π is a strongly monotonic position in u.

Finally, we regard the case where the reduction from tσ to u[ℓδ]π has the form

tσ i→∗
R ℓ′δ′ i→R r′δ′ i→∗

R u[ℓδ]π and where the step from ℓ′δ′ to r′δ′ is the first reduc-

tion at the root position. Since δ′ is a normal substitution, we have r′ ∈ Invokes(f).

Hence, as root(t) = root(ℓ′), the truth of almon(t, f) implies that the constraints in

almon(r′, f) are also true. As the reduction from r′δ′ to u[ℓδ]π is shorter than the reduc-

tion from tσ to u[ℓδ]π, the induction hypothesis implies that π is a strongly monotonic

position in u. ⊓⊔

5.2 Connecting Termination Tools and Inductive Theorem Provers

We implemented the new processor of Theorem 12 in our termination tool AProVE [15]

and coupled it with the small inductive theorem prover for many-sorted conditional

term rewriting that was already available in AProVE. To verify “R≻ |=F ′,V′

ind t≻ = tt”

as required in Condition (22), our theorem prover requires the TRS R≻ to be inner-

most terminating, non-overlapping, sufficiently complete w.r.t. the used typed variants
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F ′ and V ′ (i.e., well-typed ground terms in normal form may not contain defined sym-

bols), and free of mutual recursion. For any left-linear TRS R, innermost termination

of R≻ is implied by innermost termination of R, which is checked by the processor

in Theorem 12 anyway. Similarly, non-overlappingness of R≻ is equivalent to non-

overlappingness of R which is already required in Theorem 12. For many classes of

TRSs, sufficient completeness is also easy to check automatically, cf. e.g. [23]. If the

TRS is not sufficiently complete, one can automatically add rules for the missing cases

where the right-hand sides are arbitrary ground terms of the corresponding type. Fi-

nally, for TRSs that encode conditions by mutually recursive unconditional rules, it

is easily possible to automatically transform these rules into conditional rules without

mutual recursion again. As an example, consider the four rules from R′≻Pol1
sort defining

the mutually recursive functions del≻ and if≻2 :

del
≻(x, empty) → ff

del
≻(x, add(y, xs)) → if

≻
2 (eql(x, y), x, y, xs)

if
≻
2 (true, x, y, xs) → tt

if
≻
2 (false, x, y, xs) → del

≻(x, xs)

Our transformation replaces these rules by the following three conditional rewrite rules:

del≻(x, empty) → ff

del≻(x, add(y, xs)) → tt ⇐ eql(x, y) →∗ true

del≻(x, add(y, xs)) → del≻(x, xs) ⇐ eql(x, y) →∗ false

Afterwards, we can apply our built-in theorem prover to prove inductive validity of

conjectures, as in Condition (22).

As stated before, in principle our approach can use any inductive theorem prover as

a black box. To demonstrate this, we also coupled AProVE with a well-known powerful

inductive theorem prover instead of using our own inductive prover inside AProVE.

We experimented with the tool ACL2, as it offers a high degree of automation and

can easily be controlled from the command line. Furthermore, many characteristics

of Applicative Common Lisp (ACL) correspond to the conditional TRSs which we

already used as input for our built-in theorem prover. User-defined functions in ACL

are strict in all their arguments, i.e., termination of an ACL program corresponds

to innermost termination. Furthermore, ACL functions are defined for all arguments

and the evaluation of ACL expressions is deterministic. This corresponds to sufficient

completeness and non-overlappingness of our conditional TRSs. There is also a non-

strict if function in ACL that can be used to encode the conditions of our rewrite

rules. To represent a constructor term t in ACL, we use a list that is headed by the

constructor symbol root(t) and whose tail is the list of the arguments. Consider again

Condition (23) which has to be shown in order to prove innermost termination of the

TRS from Example 1.

R′≻Pol1
sort |=ind del

≻Pol1 (max(add(x, xs)), add(x, xs)) = tt.

We now explain how TRSs like R′≻Pol1
sort are automatically transformed into ACL

programs, and how the conjecture “del≻Pol1 (. . .) = tt” is automatically transformed

into a conjecture about this ACL program, such that ACL2 can prove its inductive

validity and such that this implies the original condition (23).
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We encode del≻Pol1 , max, eql, and ge by the ACL function symbols del, max, eql,

and ge, respectively, as well as add and tt by the symbols add and tt, respectively.

For equality, ACL offers the built-in function eq, and for defining a theorem it has the

keyword defthm. Then we obtain the following ACL conjecture for our formula:

(defthm

(eq

(del (max ’(add x xs)) ’(add x xs))

tt

)

)

Unfortunately, with this encoding one has the drawback that ACL is untyped. But

one needs types in order to prove Condition (23), cf. Footnote 16. In other words, the

conjecture only holds for all ground terms of the corresponding types. The solution is

to introduce a function is-type for each type which tests whether an ACL expression

corresponds to a term of that type. To deconstruct an ACL list, we can use the pre-

defined selectors car and cdr for selecting the head and the tail of a list, respectively.18

In our example, we introduce the functions is-bool, is-nat and is-list. The function

definition for is-list can be automatically generated as follows:

(defun isa-empty (xs)

(and

(consp xs)

(eq ’empty (car xs))

(eq (cdr xs) ’nil)

)

)

(defun isa-add (xs)

(and

(consp xs)

(consp (cdr xs))

(consp (cddr xs))

(eq ’add (car xs))

(is-nat (cadr xs))

(is-list (caddr xs))

(eq (cdddr xs) ’nil)

)

)

(defun is-list (xs)

(or

(isa-empty xs)

(isa-add xs)

)

)

In the definition of is-list, the first part of the disjunction tests if xs is a list cor-

responding to empty, i.e., if xs is ’(empty) (which is short for (quote (cons empty

nil)). The second part checks for a list ’(add y ys) where y is of type nat while ys is

of type list. Now we can add the types of the variables in our conjecture as a premise:

18 For brevity, ACL provides abbreviations like (cadr x) instead of (car (cdr x)), etc.
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(defthm

(implies

(and (is-nat x) (is-list xs))

(eq

(del (max ’(add x xs)) ’(add x xs))

tt

)

)

)

The remaining problem is that we need to encode the rules of R′≻Pol1
sort as ACL func-

tions. The main task is to transform the pattern matching in the rewrite rules to a case

analysis using the selectors car and cdr. By using these selectors, we can determine

which rule would have been applied in the TRS. This rule is always unique as the TRS

was non-overlapping. Together with sufficient completeness, this means that we do not

need to check any condition for the last case of the case analysis. In our example, we

obtain the following ACL function definition for del≻Pol1 which results from the three

unconditional rules above. Note that we add a test for the type of the argument as a

condition and return an arbitrary ground term of the correct type (e.g., empty) if the

function is called with an argument of the wrong type.

(defun del (x xs)

(if (and (is-nat x) (is-list xs))

(if (isa-empty xs)

’ff

(if (and (isa-add xs) (eq (equal x (car xs)) ’true))

’tt

(del x (cdr xs))

)

)

’empty

)

)

By applying the above transformation also to max, eql, and ge, we obtain a complete

definition of the functions used in our conjecture.

For ACL2’s automation to be successful on these examples, we add a few hints

to the ACL program. The hint (set-ruler-extenders :all) is needed to automat-

ically obtain measure functions for the termination proofs of the generated auxiliary

functions. For algorithms working on lists, our experiments revealed that general-

ization often turns a true subgoal into a false one. Thus, on conjectures involving

types with a constructor of arity greater than one, we disable generalizations using

“:hints (("Goal" :do-not ’(generalize)))”. Finally, as ACL2 is very efficient, we

use (with-prover-time-limit 3 ...) around defthm to limit the proof time to three

seconds.

In this way, we have obtained a fully automated system where conjectures gener-

ated by AProVE according to the new method of the present paper are automatically

transformed into conjectures given to ACL2. Depending on the success of ACL2’s proof

attempt, AProVE continues the termination proof, possibly calling ACL2 again with

new proof goals.
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5.3 Experimental Results

To demonstrate the power of our method, [1] features a collection of 19 typical TRSs

where an inductive argument is needed for the termination proof. This collection con-

tains several TRSs computing classical arithmetical algorithms as well as many TRSs

with standard algorithms for list manipulation like sorting, reversing, etc. The previous

version of AProVE was already the most powerful tool for termination of term rewrit-

ing at the Termination Competitions. Nevertheless, this previous AProVE version as

well as all other tools in the competition failed on all 19 examples. In contrast, with a

time limit of 60 seconds per example, our new version of AProVE automatically proves

termination of 16 of them. At the same time, the new version of AProVE is as successful

as the previous one on the remaining examples of the Termination Problem Data Base,

which is the collection of examples used in the termination competition.

The version of AProVE using our built-in theorem prover and the version using

ACL2 both succeed on the same set of examples. The theorems that have to be shown by

the inductive prover concern inductive properties of natural numbers (in the notation

with “0” and “s”) and of lists. These theorems are rather easy to show for the prover

and, consequently, solving times are low. There is also no significant difference in the

speed of the termination proof when using one or the other inductive prover. Thus,

our experiments indicate that one can indeed use any inductive theorem prover as a

black box to verify the conjectures resulting from our technique. The three examples of

the 19 TRSs where AProVE fails would require more advanced termination techniques

(like narrowing of rules and the use of more sophisticated orders). In other words, the

reason for failure is not due to the inductive theorem prover.

On the web site [1] we present the details of our experiments. The web site also

lists the respective conjectures that were automatically generated and given to ACL2.

All experiments we conducted on a 2.67 GHz Intel Core i7 CPU running Linux x86 64.

We used ACL2 3.6 with SBCL 1.0.29.11 as the Lisp backend.

6 Conclusion

We introduced a new processor in the DP framework which can handle TRSs that

terminate because of inductive properties of their algorithms. This processor automat-

ically tries to extract these properties and transforms them into conjectures which are

passed to an inductive theorem prover for verification. To obtain a powerful method,

we used the new result that innermost termination of many-sorted rewriting and of un-

sorted rewriting is equivalent (i.e., that innermost termination is persistent). Therefore,

it suffices to prove these conjectures only for well-typed terms, even though the original

TRSs under examination are untyped. So in contrast to previous approaches that use

inductive theorem provers for termination analysis (cf. Section 1), our automation can

search for arbitrary reduction pairs instead of being restricted to a fixed small set of

orders.

We implemented our approach in the termination tool AProVE and coupled it both

with the powerful prover ACL2 and with a small inductive theorem prover within the

AProVE tool. Our experiments show that by our new results, the power of AProVE

increases strictly, i.e., it now succeeds on several examples where termination could

not be proved automatically by any tool before.
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Thus, the present paper is a substantial advance in automated termination proving,

since it allows the first combination of powerful TRS termination tools with inductive

theorem provers. For details on our experiments and to access our implementation via

a web-interface, we refer to [1].

In future work, it would be desirable to extend recent approaches for the certifica-

tion of automatically generated termination proofs [10,38] also to the new techniques

presented in this paper. Apart from an extension of certification to innermost termina-

tion, this would of course also involve the certification of the automatically generated

inductive proofs.
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