
Rheinisch-Westfälische Technische Hochschule Aachen
Lehr- und Forschungsgebiet Informatik II
Programmiersprachen und Verifikation

Improving efficiency and power of
automated termination analysis for Haskell

Matthias Raffelsieper

Diplomarbeit
im Studiengang Informatik

vorgelegt der
Fakultät für Mathematik, Informatik und Naturwisssenschaften der

Rheinisch-Westfälischen Technischen Hochschule Aachen

im November 2007

Gutachter: Prof. Dr. Jürgen Giesl
Prof. Dr. Ulrik Schroeder

Acknowledgments

I want to thank the following people for their support throughout the creation
of this thesis:

• My supervisor Prof. Dr. Jürgen Giesl, for giving me the chance to work
on the AProVE team and for providing me with such an interesting topic
for this diploma thesis.

• Prof. Dr. Ulrik Schroeder, for agreeing to review this diploma thesis.

• The research assistant Stephan Swiderski for his invaluable support in
every aspect of this diploma thesis.

• The research assistants Carsten Fuhs, Peter Schneider-Kamp, and René
Thiemann, for a lot of interesting discussions and for a productive and
friendly environment.

• The whole AProVE team for a great working atmosphere.

• My fellow students Nicolas Becker, Tobias Buhr, Thorben Keller, Fekry
Meawad, and Andreas Tielmann for a lot of feedback and a great time
throughout my whole time at the RWTH.

• My parents Norbert and Birgit Raffelsieper, and my siblings Christoph,
Thomas, and Lisa, for supporting me all the time.

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst und keine an-
deren als die angebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich
gemacht habe.

Aachen, den 12. November 2007,

Matthias Raffelsieper

3

Contents

1 Introduction 7

2 Preliminaries 11
2.1 Syntax and Semantics of Haskell 11
2.2 Term Rewrite Systems . 19
2.3 Dependency Pair Framework . 20

3 Previous Haskell Termination Approach 23

4 Extension to Type Classes 27
4.1 Generating Class Instances . 27
4.2 Extending the Termination Graph 31

5 Reduction to Necessary Components 41

6 Renaming 45
6.1 Renaming nodes of a Termination Graph 49
6.2 Correctness of Renaming . 54
6.3 Examples for the strength of Renaming 66

7 Innermost Termination Analysis 69
7.1 Towards Innermost: Minimal Chains 70
7.2 Switching to Innermost . 75

8 Evaluation of the Improvements 79

9 Lazy-Termination Analysis 83
9.1 Generating Instances for Lazy-Termination 84
9.2 Reduction of Lazy-Termination to H-Termination 86
9.3 Examples for Lazy-Termination 88

10 Non-Termination Analysis for Haskell 93
10.1 Motivation for allowing evaluation inside any argument of a con-

structor . 94
10.2 Termination Graph for Non-Termination 95
10.3 Basic Instances and DP problems 99
10.4 Infinite Chains imply Non-Termination 111

11 Conclusion and Outlook 119

5

6 CONTENTS

References 123

List of Figures 127

Index 129

Chapter 1

Introduction

Computers become more and more a part of everyday’s life. In the last few
decades, the computer has evolved from a technical tool with unclear practical
use to an essential piece in our society. This evolution took place, because the
software, i.e., the programs that are run on computers, could be adapted to
first solve all tedious tasks, then to solve tasks that were too complex before.
Therefore, it is the versatility through software of modern computers that lead
to their success.

Software that is executed by a computer is still being written in most parts
by humans. Only a very small amount of software can be generated automat-
ically these days. Since humans will always make small mistakes, one has to
ensure that the programs will contain as few mistakes (often called bugs) as
possible. One approach to avoid bugs is testing, where a number of input values
is provided and the output of the program is compared against the expected
output. However, testing can never be complete, i.e., there will always be cases
which are not covered by a test.

Since computers and software have become so ubiquitous, and since software
has sometimes advantages over humans, such as higher speed at certain oper-
ations, no concentration issues, etc., computers are also used in highly critical
environments, such as airplanes, financial transactions, medical purposes, etc.
For these environments, testing the software is not enough. One wants to make
sure that no bugs exist in the used components. While for hardware, redun-
dancy is an often employed approach, for software so-called verification is used.
This is, because for hardware it is usually assumed that the redundant parts
fail independently of each other. However, if one simply replicates the software,
then bugs in the software are not independent, i.e., upon a wrong input, all
instances will then exhibit the same bug. Software verification tries to formally
prove that a program does what it was specified to do. This correctness proof is
divided into two proofs: First, one shows partial correctness, i.e., if an algorithm
outputs a value, then this is the correct value. The other part of the proof is,
that the algorithm actually always outputs a result for all inputs. To show this
latter property, which is called termination, a numerous amount of techniques
have been developed. Such a technique can never prove termination for all al-
gorithms, this is because it has been proven that termination of a problem is
generally undecidable [Tur36]. Most of these techniques focus on Term Rewrite
Systems, a formalism that is intentionally kept small, but it still allows to for-

7

8 CHAPTER 1. INTRODUCTION

mulate every algorithm in it. A description of Term Rewrite Systems is given
in [BN98], for example. For Term Rewrite Systems, quite a few automatic tools
exist that show termination. One of the most successful tools in this area is the
automated termination prover AProVE [GTSKF04, GSKT06], which has won
all of the four international termination competitions [MZ07] for Term Rewrite
Systems.

However, no algorithm is developed in this formalism. Instead, programmers
use high-level programming languages. Therefore, it is an interesting question
how to apply the existing techniques for Term Rewrite Systems to these pro-
gramming languages.

This has recently been the field of quite some investigation. A step towards
these programming languages is given in [Has04], where a functional and an
imperative programming language are introduced which resembled some of the
features modern programming languages have. These programming languages
are directly translated into Term Rewrite Systems, for which termination is then
tried to be shown. In [Swi05, GSSKT06], a technique was presented which works
on full Haskell 98 [Jon03]. Here, from Haskell programs so called Dependency
Pairs [AG00] are generated directly, which is a technique originally developed
for Term Rewrite Systems. This is an advantage over a previous approach
presented in [PSS97], where it was tried to directly find an ordering, which
worked only for special cases. For imperative programs, a similar approach for
a restricted set of Java programs was presented in [Son07].

Another approach to prove termination of the practically used logic pro-
gramming language Prolog by employing techniques for Term Rewrite Systems,
was presented in [Käu05, SKGST07]. For Prolog, it is interesting that tools
implementing direct approaches are available which can be compared with the
afore mentioned technique. The results of such a comparison are presented
in [SKGST07] as well, which indicate that termination proofs based on the pre-
sented transformation to Term Rewrite Systems are comparable in strength to
the dedicated tools cTI [MB05] and TerminWeb [CT99]. The comparison shows
that the transformation to Term Rewrite Systems done by AProVE is able to
prove more examples terminating than the dedicated tools. However, it should
be mentioned that neither the transformational approach to Term Rewrite Sys-
tems nor the direct approaches supersede the other. There are examples where
the transformational approach is successful while the direct ones fail, and vice
versa. Furthermore, these results show that the transformation to Term Rewrite
Systems is a very powerful approach, which has the advantage of a very large
research community behind it and therefore more progress is made for it.

Unfortunately, for lazy evaluating programming languages such as Haskell
and for real imperative programming languages, there are no such comparisons.
This is, because there are no implementations of other approaches available.
This would be interesting, as at least for imperative programs there are direct
approaches as well, such as for example [CPR06].

For Haskell, another possible approach would be to transform the Haskell
program into a Term Rewrite System, since Term Rewrite Systems have a func-
tional semantics, as well. However, for such an approach no good results can be
expected. This is, because there are functions that intuitively would be called
non-terminating. However, when these are inserted into the right context, then
termination of these can be shown, due to the lazy evaluation strategy of Haskell.
Thus, we analyze termination not for every function contained in a program,

9

but for a start term, i.e., a program entry point. In a Haskell program that
is compiled, this is normally the defined function main, but in a Haskell inter-
preter, one is allowed to enter an arbitrary ground term, which is a term without
variables that is to be evaluated. Therefore, we will consider termination of a
start term for a given Haskell program.

The results of this thesis extend the approach presented in [GSSKT06,
Swi05]. It will present a number of improvements to the automatic termina-
tion analysis for Haskell, which improve both the runtime for finding a proof
and the strength of the approach.

The presentation of the improvements contained in this thesis shall be out-
lined briefly. In Chapter 2 the programming language Haskell for the standard
Haskell 98 [Jon03] is shortly introduced. There, we will also define our notion of
termination with respect to a start term. Furthermore, the notation and basic
definitions of Term Rewrite Systems and Dependency Pairs are given.

Chapter 3 outlines the approach of [GSSKT06, Swi05] which is the basis we
will extend in the following chapters.

First, the approach of Chapter 3 is extended in Chapter 4 to include type
classes. This was already included in [Swi05], but here it will be incorporated
into the notation and proofs given in [GSSKT06]. Furthermore, we will modify
the approach in order to have fresh variables only inside Dependency Pairs, not
inside rules.

In Chapter 5, we present a reduction of large Haskell programs to only those
parts which might be needed in order to evaluate the start term. This enables
us to usually leave out large parts of used libraries which provide a large set of
functions, where typically only a few of these are being used.

The next extension of the approach is presented in Chapter 6. There, we care
for the creation of first-order terms that are separated according to the recursion
structure of the program. This is an improvement compared to the previous
approach which used an applicative encoding due to higher-order terms. Such
an encoding has quite a few drawbacks that make it harder to prove finiteness
of such DP problems. Furthermore, we will include the type class information
of the terms into the generated Dependency Pairs. This was not done in [Swi05]
and ensures the non-overlappingness of the resulting rules.

Because of this non-overlappingness, we can show in Chapter 7, that it suf-
fices to only prove absence of minimal innermost chains. This sounds counter-
intuitive at first, considering that Haskell has a lazy evaluation strategy, which
can be described as a leftmost-outermost strategy. But as we will show in this
chapter, all of this information was already used in the previous steps and hence
the easier minimal innermost chains suffice.

In Chapter 8, we then show the practical relevance of the presented improve-
ments on a large set of start terms. For these, we try to show termination and
it is shown that the number of start terms that can be proven terminating is
increased from 56.67 % to 76.68 %.

As already discussed above, there are functions in Haskell that are non-
terminating, but still a start term using these functions is terminating and can
be shown by our approach as such. This occurs, because Haskell has a lazy
evaluation strategy, where a function is only evaluated as far as needed. Such
functions are called lazy-terminating. One form of it is regarded in Chapter 9.
There, it will be shown how to prove a term to be lazy-terminating using the
existing techniques for termination. When this could be proven, one is sure that

10 CHAPTER 1. INTRODUCTION

for all functions requiring only a lazy-terminating argument, the current start
term may be used.

In the penultimate Chapter 10, we are not considering termination anymore.
Instead, we show how we can prove nontermination of a start term for a given
Haskell program. If a case is detected where an infinite evaluation exists, then
usually a programming error has been detected. Since a counterexample is
produced, a programmer can look into this counterexample and is able to fix
programming errors more easily.

Finally, Chapter 11 gives a conclusion of the presented work and presents a
few pointers as to what might be interesting topics in the context of the pre-
sented approach for Haskell termination analysis, where further research seems
promising.

It should be noted that all of the above has also been implemented in the
automatic termination prover AProVE [GTSKF04, GSKT06]. This tool ac-
cepts Haskell programs conforming to the full Haskell 98 language specification
and can analyze start terms for H-Termination, Lazy-Termination, and Non-
Termination using the techniques described in this thesis.

Chapter 2

Preliminaries

The reader of this thesis should be familiar with the Haskell programming lan-
guage in its incorporation “Haskell 98” [Jon03]. Furthermore, the basics of
term rewriting and the Dependency Pair Framework should be known to the
reader, for reference see for example [BN98, GTSK05b]. The main purpose of
this chapter is the introduction of the notations that will be used, therefore only
a general description of these concepts will be given.

2.1 Syntax and Semantics of Haskell

The AProVE Haskell implementation, which was mainly implemented by Swider-
ski [Swi05], accepts the full Haskell 98 standard as defined in [Jon03]. Since
Haskell is a complete programming language, its formal definition is rather long.
Therefore, this section will only focus on the main components of Haskell and
introduces these informally. Furthermore, we define a few properties of Haskell
terms that will be used in the remainder of this thesis.

A Haskell program consists of data definitions, function declarations, and
class/instance definitions. A data definition introduces a new algebraic, user-
defined data type. An example for such a data definition would be

data Nats = Z | S Nats

Here, the data type Nats represents the natural numbers starting at zero by
the constant Z for zero, and by building the successor of a natural number by
prepending the constructor S to the given natural number.

Data types can also be polymorphic. This enables definitions of structures
such as lists, where the type of the elements is irrelevant to the list. This could
for example be done as follows:

data List a = Nil | Cons a (List a)

The above defines a list data type which represents the empty list with the
constructor Nil, and the list starting with an element x and a tail list xs by the
term Cons x xs.

For the data type List a, the type variable a determines the type of the
elements. This is, because for the data constructor Cons, the first argument
is defined to be of type a. Thus, a Haskell programmer is allowed to write

11

12 CHAPTER 2. PRELIMINARIES

List Int if that instance of a list shall only contain values of the predefined
type Int, and at the same time List Nats would be a list, where all contained
elements have the type Nats.

Function declarations are given in rules, which are applied in order from
top to bottom. A rule consists of a left-hand side and a right-hand side. The
right-hand side of a rule may be an arbitrary Haskell expression; whereas for the
left-hand side some restrictions apply. The first symbol on the left-hand side is a
defined function symbol. This defined function symbol is followed by a number
of so-called patterns. These patterns are linear, meaning that no variable occurs
twice in the set of patterns of a rule. Furthermore, these patterns can be thought
of to contain only constructors and variables. There are cases where this is not
true, e.g., the (x+n)-pattern. But for user-defined types this is always the case,
and the predefined special patterns can be transformed, which will be described
further in chapter 3.

The following example shows two such function definitions.

Example 2.1 (take from example).

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

from x = Cons x (from (S x))

take Z _ = Nil
take _ Nil = Nil
take (S n) (Cons x xs) = Cons x (take n xs)

The given example is a complete Haskell program. It first contains the
declarations for the data types Nats and List a, which are then used in the
definitions of the functions take and from. If a term shall be evaluated, this
is performed in an ordered leftmost-outermost fashion. The ordering, as stated
before, is top to bottom; i.e., the rules are tried in the order as they appear in
the program. Haskell always reduces as far on the outside as possible, such that
functions, which are non-terminating when called directly, can still contribute
to the calculation. Such a function is from which builds up an infinite list of
natural numbers, starting at the number given as argument. However, if this
function is used as a second argument of the function take, where the first
argument is a term having only finite evaluation sequences, then the complete
evaluation is a finite run which returns a finite result.

A rule is applied to a term by checking every rule whether its left-hand side
matches the term with the leftmost-outermost defined symbol. The matching
process is performed by checking whether every variable in the left-hand side of
a rule can be replaced by a subterm of the term that is to be evaluated, such that
both terms are equal after this replacement. If this is the case, then the term
can be replaced by the right-hand side of the Haskell rule, where all variables are
replaced by the same term they were replaced with previously. Then the search
for a rule stops and the process of searching a term to be evaluated starts again
with the new term. In case there was no replacement such that the left-hand
side of the current rule and the term that has to be evaluated exists, then the
next rule is tried.

2.1. SYNTAX AND SEMANTICS OF HASKELL 13

Consider for example the start term take (S (S Z)) (from Z). Here, a
Haskell evaluator will first try to reduce the defined function take with the first
rule for this function. But since we have the constructor S on the first argument,
and not the constructor Z, this rule is not applicable. In this case, the Haskell
evaluator advances to the next rule. For the second rule, it has to be checked
whether the second argument of the term matches the constructor Nil. But a
term starting with the defined function from is the second argument of take in
the term that shall be reduced. Thus, the evaluator must first reduce this term
to a term starting with a constructor (a so called weak head normal form), in or-
der to decide whether the current rule is applicable or not. The Haskell evaluator
now searches for a rule that is applicable to this term. It finds the first and only
rule for from and checks the arguments. Since the argument in the rule of from
is a variable, it matches everything. So, from Z is replaced by the right-hand
side of this rule, where the variable x is replaced by its instantiation Z. Thus, the
term to evaluate further is the term take (S (S Z)) (Cons Z (from (S Z))).
Here, the Haskell evaluator again looks for a rule that could reduce the complete
term, instead of further reducing the term starting with thefunction from. It will
now be found that the second rule of take is not applicable, since the constructor
Nil is required, but the constructor Cons occurs in this argument. Therefore,
the evaluator advances to the third rule of take, whose left-hand side matches.
Thus, the new term is Cons Z (take (S Z) (from (S Z))). In this new
term, the leftmost-outermost position with a defined function is the argument
take (S Z) (from (S Z)) of the constructor Cons, which will then be tried to
reduce next. In a similar manner as before, this term will be reduced, such that
the resulting term will be Cons Z (Cons (S Z) (take Z (from (S (S Z))))).
Here, again the term starting with take is on the leftmost-outermost position
that starts with a defined symbol and must be reduced. The first rule for take
reduces this term to Cons Z (Cons (S Z) Nil), which does not contain any
further defined functions and therefore is the result of this evaluation.

Every term in Haskell is statically typed. These types can be provided, but
one is not required to specify them. Then a type inference will determine the
most general possible type for every term. For the above example functions, the
type of the function from would be inferred to be from :: Nats -> List Nats.
For the function take, the type take :: Nats -> List a -> List a would
be inferred. When a type is explicitly specified, this type must be at least
as concrete as the inferred type. One could for example provide the type
take :: Nats -> List Nats -> List Nats, thereby restricting take to lists
containing only elements of type Nats. However, no type may be specified that is
more general than the inferred type, e.g., specifying take :: Nats -> a -> a
would not be a valid type, since a list is required on the second argument of
take.

The arity of a Haskell function is defined via its type. A function f has
arity(f) = n, if f has the type f :: ρ1 -> . . . -> ρn -> ρn+1, where ρi does
not contain the type constructor -> for every 1 ≤ i ≤ n + 1.

Classes and instances thereof are used to group together data types and
ensure availability of certain defined operations on these data types. An example
for such classes and instances of them is given in the following.

14 CHAPTER 2. PRELIMINARIES

Example 2.2 (Classes and Instances).

data Nats = Z | S Nats
data Bool = False | True
data List a = Nil | Cons a (List a)

class HasZero a where
getZero :: a

instance HasZero Nats where
getZero = Z

instance HasZero Bool where
getZero = False

class Addition a where
plus :: a -> a -> a

instance Addition Nats where
plus Z n = n
plus (S m) n = S (plus n m)

instance Addition a => Addition (List a) where
plus Nil Nil = Nil
plus (Cons x xs) (Cons y ys) = Cons (plus x y) (plus xs ys)

class Addition a => Multiplication a where
mult :: a -> a -> a

In the example, the class HasZero ensures that any instance of it will imple-
ment the function getZero. Such a function which is defined inside a class is
called a class member . For the different instances, it is the case that the type
variable, which was used in the class definition, is instantiated with the specific
type. Therefore, in our example, the function definition for the data type Nats
must return a term of this type, while for the data type Bool a term of this
type must be returned, as the type variable a is instantiated by this type.

For the class Addition in the above program, we see that it ensures the
existence of a member plus for all of its instances. This function adds nat-
ural numbers by decrementing the first number and constructing a term that
represents the sum of both arguments. For lists, it performs a componentwise
addition of the elements. In order to be able to do this, it must ensure that also
for the component type, the function plus is available. This is done by requiring
an instance for Addition a in order to build the instance Addition (List a).

The last class contained in the above example is the class Multiplication
which contains a member mult. For this class, it is required that an instance
of the class Multiplication must be an instance of the class Addition at the
same time, i.e., we have defined a subclass of Addition.

For every type, it is valid to restrict type variables to certain classes by so
called class constraints. An example for such a type is given in the example
below.

2.1. SYNTAX AND SEMANTICS OF HASKELL 15

Example 2.3 (Class Constraints).

isZero :: (HasZero a, Eq a) => a -> Bool
isZero x = x == getZero

Here, the type for the argument x is restricted to such types that are an in-
stance of the two classes HasZero and Eq (which is a predefined class in Haskell
providing the function == used for the comparison).

In Haskell 98, a class may only have one type variable as argument. When
an instance shall be defined, then only the head symbol of the instance type may
be a type constructor, the rest must be type variables. Furthermore, every class
constraint that restricts an instance must only contain a single type variable.
This makes the calculation of instances for a ground term decidable, since a
class can be understood as a set of types, where for all of these types certain
operations exist. As seen in the example above, classes may be structured
hierarchically, i.e., one can define classes to be a subset of another class. Here,
it is allowed to even define classes as a subset of the intersection of a set of other
classes, i.e., a class may have multiple superclasses.

As stated before, Haskell considers the rules of a program in top-to-bottom
order, and applies rules as far outside as possible. To identify subterms of a
term, we define the set of positions Occ(t) for a term t.

Definition 2.4 (Positions Occ(t)). For any term t, it holds that ε ∈ Occ(t) and
if t = (t1 t2), then {1π1, 2π2 | π1 ∈ Occ(t1), π2 ∈ Occ(t2)} ⊆ Occ(t).

In Haskell, terms are constructed using the function “juxtaposition” only.
This is the reason why positions only consist of the numbers “1” and “2”.
The function “juxtaposition” associates to the left, for example it holds that
take n xs = (take n) xs. Among the positions of a term, one position iden-
tifies the subterm that has to be evaluated next. This position is called the
evaluation position of a term.

Definition 2.5 (Evaluation position e(t), [GSSKT06]). For a Haskell Program
HP , a left-hand side l of a rule, and any term t, we define

el(t) =


ε, if l matches t
π, for the leftmost-outermost position π where head(l|π) is a con-

structor, head(l|π) 6= head(t|π), and the symbol head(t|π) is de-
fined or a variable

Using this evaluation position with respect to a left-hand side of a rule, we
can define the evaluation position of a term with respect to the Haskell program:

e(t) =


1m−nπ, if t = (f t1 . . . tn tn+1 . . . tm), f is defined, m > n=arity(f),

and π = e(f t1 . . . tn)
el(t)π, if t=(f t1 . . . tn), f is defined, n=arity(f), there are feasible

equations for t (the first is “l=r”), el(t) 6=ε, and π=e(t|e(t))
ε, otherwise

16 CHAPTER 2. PRELIMINARIES

It should be noted that in the definition of the evaluation position we also
allowed non-ground terms. This is, because for our approach we want to evaluate
Haskell symbolically. Here, variables shall represent arbitrary terminating terms.
For a precise definition of our notion of termination see definition 2.7.

As an example, for the term t = take u (from m) and the previously given
rules for take and from, we have that t|e(t) = u. This means that the term intro-
duced for u by an instantiation of the term t has to be evaluated first, in order to
determine the applicable rule for this term. If we instead knew that this position
starts with the constructor S, e.g., for the term s = take (S n) (from m), the
first rule of take is known to not being applicable. Thus, the redex of s is
s|e(s) = from m, since we must evaluate this subterm first in order to determine
whether the second rule of take is applicable.

If we have a term like for example x Z or take (S n), then the evaluation
position stays at the root position, i.e., it will be ε for terms having a variable
head and for terms which start with a defined function symbol that is applied
to too few arguments. If instead a defined function symbol is applied to enough
arguments, but no rule in the program is applicable to it, then we call such
a term an error term. These error terms are replaced by a term error [],
where the predefined special function error has the semantics that the whole
evaluation of the current term immediately stops. This is what makes it different
from normal predefined functions. Thus, for the term p Z, we can replace this
term with error []. This behavior is the same as that of a Haskell interpreter;
it will stop the evaluation and output an error, usually with an error message
like “pattern match failure”. This error message is normally the argument of
the error function, but we will always replace it with the empty string (i.e.,
the empty list of characters), since we are not interested in these messages.

As could be seen, the evaluation position identifies the term that has to
be evaluated next. The evaluation step that will take place at the evaluation
position is formally defined as a relation below.

Definition 2.6 (Haskell evaluation relation →H, [GSSKT06]). For a Haskell
program HP , we define s →H t, iff

(1) s rewrites to t on position e(s) using the first equation of the program
whose left-hand side matches s|e(s), or

(2) s = (c s1 . . . sn) for a constructor c with arity(c) = n, si →H ti for some
1 ≤ i ≤ n, and t = (c s1 . . . si−1 ti si+1 . . . sn).

In this evaluation relation, we allow to descent into constructors, although
for a term t = c t1 . . . tn, where c is a constructor, e(t) = ε holds. However,
Haskell-interpreters, such as for example Hugs [JP99], evaluate a term until they
can be displayed as a string. To transform a term into a string representation,
these interpreters use a function show. For most user-defined data types, such a
function can be generated automatically by adding deriving Show to the data
type declaration. This generated function will transform a term c t1 . . . tn, where
c is a constructor of this type, into the string starting with “c” and being followed
by show t1, . . . , show tn. Therefore, such a show function requires all arguments
of constructors to be evaluated further, instead of stopping at a weak head
normal form. Since we do not want to analyze different implementations of show
functions, we assume that the arguments of constructors must be evaluated, too,

2.1. SYNTAX AND SEMANTICS OF HASKELL 17

but the order of evaluation is arbitrary. This is reflected in the above definition
of the Haskell evaluation relation →H.

This evaluation relation is used to define the notion of H-terminating terms.

Definition 2.7 (H-terminating terms, [GSSKT06]). The set of H-terminating
ground terms is defined as the smallest set of ground terms t, such that

(a) t does not start an infinite evaluation t →H . . .,

(b) if t →∗
H (f t1 . . . tn) for a defined function symbol f , n < arity(f), and the

term t′ is H-terminating, then (f t1 . . . tn t′) is also H-terminating, and

(c) if t →∗
H (c t1 . . . tn) for a constructor c, then t1, . . . , tn are H-terminating.

A term t is H-terminating, iff tσ is H-terminating for all substitutions σ with
H-terminating ground terms (of the correct types). These substitutions may also
introduce new defined functions with arbitrary defining equations.

Please note that case (c) of definition 2.7 is not included in case (2) of defi-
nition 2.6. This is, because a subterm of a constructor could as well be a func-
tion, which would be normal w.r.t. →H. The reason to require H-termination
of a term which can be extended by an arbitrary argument is, that a context
might apply such a function to some arguments. So what we show is, that
an H-terminating term can be used as an argument of an H-terminating func-
tion, such that the resulting term is still H-terminating. For example, the term
take n (from m) can be used as an argument of a derived show function, giv-
ing the term show (take n (from m)) which still is an H-terminating term.
From the term take n (from m) we can see that this does not hold, if a non-
H-terminating term is used as an argument of an H-terminating function: The
argument from m is not H-terminating, but the complete term is. However, this
is dependent on the context, so for example the term show (from m) is not
H-terminating, if we used the derived show functions for our data types.

Often, we also want to specify the types and the class constraints that a
Haskell term has. For this purpose, we will use a notation that can be specified
at an arbitrary level of precision, where class constraints and types may be
specified additionally to the term structure itself.

Definition 2.8 (Notation of terms). A Haskell term consists of a set of class
constraints cs, a type ρ, and its structure t. This will be denoted in the following
equivalent ways, with different levels of detail:

• cs⇒ t
ρ

• cs⇒t

• t
ρ

• t

When class constraints are specified, they are always specified on the top-
level, which corresponds to Haskell’s type schema.

The example given below shall demonstrate the different levels of detail in
this notation.

18 CHAPTER 2. PRELIMINARIES

Example 2.9 (Different levels of detail in term notation). Consider the Haskell
program for the functions take and from, given in example 2.1.

For the term take n (from m), the following notations are equivalent:

• ∅⇒

take
Nats -> List Nats -> List Nats

n
Nats

List Nats -> List Nats

(
from

Nats -> List Nats

m
Nats

List Nats

)
List Nats

• ∅⇒take n (from m)
List Nats

• ∅⇒take n (from m)

• take n (from m)
List Nats

• take n (from m)

For an example containing class constraints, reconsider the Haskell program
from example 2.2, containing the function plus for different data types. For the
term plus x y, the following notations are equivalent:

• Addition a⇒

plus
a -> a -> a

x
a

a -> a

y
a

a

• Addition a⇒
plus x y

a

It should be noted that really every term is associated with a type and a set
of class constraints. So we only leave out information that is evident from the
context.

In order to be able to quickly extract all free variables in a term, we define
a special notation for these. For the term structure itself, these can be simply
collected. For type variables, we will descent into the types of subterms, as well,
instead of only looking at the type of the complete term.

Definition 2.10 (Variables). For a Haskell term t, we define the set VH(t) = {t}
if t is a Haskell variable, and VH(t) = VH(t1) ∪ VH(t2) if t = (t1 t2).

For the Haskell term t, we define VT(t) =
⋃

s
ρ Et

VT(ρ). Here, VT(ρ) = {ρ}
if ρ is a type variable, and VT(ρ) = VT(ρ1) ∪ VT(ρ2) if ρ = (ρ1 ρ2).

For a set of class constraints cs, we define the set of type variables of these
class constraints as VT(cs) = {a ∈ VT(ρ) | C ρ ∈ cs}.

It should be observed that for a term t = f t1 . . . tn, it holds that VH(t) =⋃n
i=1 VH(ti). The example below shall demonstrate, how these variables are

collected.

Example 2.11 (Variables and Type Variables). As an example, we want to
have a function length that counts the number of elements in a list.

data List a = Nil | Cons a (List a)

length Nil = Z
length (Cons _ xs) = S (length xs)

2.2. TERM REWRITE SYSTEMS 19

We want to consider the term t = length xs. For the variables, it holds
that VH(t) = VH(length xs) = {xs}.

In order to determine the type variables of t, we have to take a look at all
types of subterms. Thus, we write the term t with full type annotations:

length
List a -> Nats

xs
List a

Nats

In this notation, the types of all subterms of t = length xs can be seen.
Thus VT(t) = VT(Nats) ∪ VT(List a -> Nats) ∪ VT(List a) = {a}.

In the example, we see that the type variable a does not occur in the type
Nats of the complete term. This is the reason why the function VT considers
the types of all subterms, too.

2.2 Term Rewrite Systems

This section briefly introduces the basic notions and concepts that are used
in Term Rewriting, and shall chiefly introduce the used notation. For an in-
depth discussion on Term Rewriting, please see the book by Baader and Nip-
kow [BN98], for example.

Let V be a countably infinite set of variables and let Σ be a signature, i.e., a
finite set of functions where every function is associated a natural number which
is called its arity . Then the set of terms over Σ and V, denoted T (Σ,V) is defined
as the smallest set such that V ⊆ T (Σ,V) and if f ∈ Σ and arity(f) = n, then
f(t1, . . . , tn) ∈ T (Σ,V) for all t1, . . . , tn ∈ T (Σ,V).

For a term t ∈ T (Σ,V), we define the set of variables occuring in t, which
will be denoted as V(t), as follows: V(t) = t if t ∈ V, and V(t) =

⋃n
i=1 V(ti) if

t = f(t1, . . . , tn). A term t is called a ground term, iff V(t) = ∅.
Also, for a term t we define the set of positions of t, denoted Occ(t). This

set is inductively defined by ε ∈ Occ(t), and iπ ∈ Occ(t) if t = f(t1, . . . , tn),
1 ≤ i ≤ n, and π ∈ Occ(ti). If π ∈ Occ(t), then the term identified by π is
defined as t|ε = t and t|π = ti|π′ if t = f(t1, . . . , tn) and π = iπ′. Two positions
π1, π2 ∈ Occ(t) are called disjoint, denoted π1⊥π2, iff there exist π′, π′′1 , π′′2 ∈ N∗
and i, j ∈ N, such that π1 = π′iπ′′1 , π2 = π′jπ′′2 and i 6= j.

For two terms s and t and a position π ∈ Occ(t), the term t[s]π results from
replacing t|π by s. This can be defined as t[s]ε = s and if t = f(t1, . . . , tn) and
π = iπ′, then t[s]π = f(t1, . . . , tn)[s]iπ′ = f(t1, . . . , ti[s]π′ , . . . , tn).

A substitution σ is a mapping from V to T (Σ,V), where it must hold that
|{x | σ(x) 6= x}| < ∞. The application of a substution σ to a term t is de-
noted tσ and is defined as tσ = σ(t) if t ∈ V, and tσ = f(t1σ, . . . , tnσ) if
t = f(t1, . . . , tn). If for two terms s and t it holds that sσ = tσ for a substi-
tution σ, then σ is called a unifier of s and t. For a term s and a term t, a
substitution σ is called a matcher of s to t, if sσ = t.

A term t′ is a subterm of another term t, symbolically tD t′, iff there exists a
position π ∈ Occ(t) such that t|π = t′. A term t′ is a proper subterm of another
term t, written t B t′, iff there exists a position π ∈ Occ(t) such that t|π = t′

and π 6= ε.
A Term Rewrite System (TRS) R over T (Σ,V) is defined as R ⊆ T (Σ,V)2,

where we write l → r ∈ R iff (l, r) ∈ R. Furthermore, it must hold that t 6∈ V

20 CHAPTER 2. PRELIMINARIES

and V(r) ⊆ V(l). The elements of a TRS are called rules. A term s can be
rewritten/reduced to a term t with R, denoted s →R,π t, if π ∈ Occ(s) and
there exist a rule l → r ∈ R and a substitution σ, such that s|π = lσ and
t = s[rσ]π. The term s|π is called a redex. We write s →R t iff a π ∈ Occ(s)
exists, such that s →R,π t. Furthermore, we write s

ε−→R t iff s →R,ε t, and we
write s

>ε−−→R t iff s →R,π t and π 6= ε.
A function symbol f is called a defined function symbol, which is denoted

f ∈ DR, if there exists a rule of the form f(t1, . . . , tn) → r ∈ R. The set CR of
constructor function symbols is defined as CR = Σ \ DR. If the rewrite system
R is clear from the context, then we also write D and C.

We call a Term Rewrite System R an applicative Term Rewrite System, iff
DR 3 app for a binary symbol app and where every f ∈ Σ with f 6= app has
arity(f) = 0. Otherwise, R is called a first order Term Rewrite System. Thus,
a Haskell program can be seen as an applicative Term Rewrite System, since the
only defined function having a non-zero arity is “juxtaposition”, as was already
mentioned in the previous section.

For two relations →1,→2⊆ M2, the concatenation, denoted →1 ◦ →2, is
defined as →1 ◦ →2= {(x, z) | ∃y : x →1 y →2 z}. For any relation →⊆ M2, we
define →0= {(x, x) | x ∈ M}, →n+1=→ ◦ →n for every n ∈ N, →+=

⋃n
i=1 →i,

and →∗=→0 ∪ →+. We say that a relation →⊆ M2 is reflexive, iff x → x for all
x ∈ M . It is called irreflexive, iff x 6→ x for all x ∈ M . The relation → is called
well-founded, iff no infinite sequence x0 → x1 → x2 → . . . exists, where xi ∈ M .
It can be observed that → must be irreflexive in order to be well-founded.

A term t is called terminating w.r.t. a relation →, iff there is no infinite se-
quence t → t1 → t2 → A Term Rewrite System R is said to be terminating,
iff there is no infinite rewrite sequence for any term t.

In order to restrict the rewrite relation to the Haskell evaluation strategy,
we define H−→R for a rewrite relation →R as follows:

For two terms s and t, it holds that s
H−→R t, iff s →R,π t and for all

π′ ∈ Occ(s), where s →R,π′ t′ for some term t′, it holds that π′ = ππ′′ for some
π′′ ∈ Occ(s|π), or π = π1iπ2, π′ = π1jπ

′
2 and i < j. The term s|π is called a

leftmost-outermost redex.

2.3 Dependency Pair Framework

This section briefly recapitulates the basic definitions of the Dependency Pair
Framework (DP Framework), as described in [GTSK05b]. It is an extension of
the original Dependency Pairs Approach which was presented in [AG00]. The
main improvements of the DP framework over the Dependency Pair Approach
consist of even more modular proofs and by introducing a new component,
the TRS Q, which is the reason for choosing this rather complicated form of
Dependency Pairs. This TRS Q serves the purpose of restricting the possible
evaluations: A proper subterm of another term where the subterm is reducible
w.r.t. Q blocks all reductions above it, until it has been reduced to a term that
is normal w.r.t. Q. Thus, the set Q can define a certain degree of innermost
evaluations. This may seem unsuited for the analysis of Haskell at first, but we
will see later that this TRS will be of great value when we need only partial
innermost evaluations in chapter 10. Because only the information whether a

2.3. DEPENDENCY PAIR FRAMEWORK 21

term is normal w.r.t. Q is of interest, we will often leave out the right-hand sides
of this TRS.

A quadruple (P,Q,R, f) is called a DP problem, iff P, R, and Q are Term
Rewrite Systems and f ∈ {a,m}.

The Q-restricted rewriting Q−→R is defined as s
Q−→R t iff s →R t and no

proper subterm of s is reducible with →Q.
For TRSs P, R, and Q, a possibly infinite sequence s1 → t1, s2 → t2, . . . ∈ P

is called a (P,Q,R)-chain, iff there are substitutions σi such that tiσi
Q−→
∗
R

si+1σi+1 for all i and no proper subterm of a siσi+1 is reducible with →Q. A
chain is minimal , iff there is a substitution σ as above and all tiσi are termi-
nating w.r.t. Q−→R.

The flag f in a DP problem indicates whether any, or only minimal chains
shall be considered.

A DP problem (P,Q,R, a)/(P,Q,R,m) is called finite, iff it contains no
(minimal) infinite (P,Q,R)-chains. A DP problem (P,Q,R, a)/(P,Q,R,m)
is called infinite, iff either it contains a (minimal) infinite (P,Q,R)-chain, or
R is not terminating. Please note that a DP problem can be both finite and
infinite at the same time, since a DP problem may contain no infinite chain, but
a non-terminating set of rules.

For every DP problem (P,Q,R, f), we can assume that the defined symbols
in P and R are disjoint. If this was not the case, then we could replace P
by P] = {f](s1, . . . , sm) → g](t1, . . . , tn) | f(s1, . . . , sm) → g(t1, . . . , tn) ∈ P}.
Here, the symbols f] and g] are fresh symbols that do not occur in R.

Chapter 3

Previous Haskell
Termination Approach

This chapter briefly outlines the previous approach to Haskell Termination anal-
ysis [Swi05, GSSKT06] which is to be extended in this thesis. This previous
approach is an improvement of [PSS97] that performs termination analysis of
a small Haskell-like language, but is restricted to a special form of what we
call Termination Graphs (“termination tableaux without crossings”). The used
notation will follow [GSSKT06] whenever possible.

As a first step, the Haskell program is transformed into a simplified form
of Haskell. The simplified Haskell which is used is not Core Haskell, since this
is more suited for evaluation purposes, but makes termination analysis harder.
These transformations remove lambda- and if-expressions, and convert special
patterns, for example. For a detailed description please refer to [Swi05], since
these transformation were not changed during the development of this thesis.

After the transformations were applied, the result is a Haskell program that
only consists of top-level function definitions, where all left-hand sides con-
tain only basic patterns. Basic patterns are such patterns that do not have
any special semantics, i.e., they consist only of constructors and variables. An
example for a pattern that is not a basic pattern is y@(x+2), which will be
transformed into a test for y >= 2 and every occurrence of the variable x will
be replaced by the term (y-2). This transformation follows the definition of
the (x+n)-pattern, which is given in [Jon03, Figure 3.2, part 2: Semantics of
Case Expressions, case (s)].

The next step consists of constructing the Termination Graph. The formal
definition of the Termination Graph will be given in definition 4.12, where it
will be extended in order to include type classes. Therefore, we only want to
show an example construction of a Termination Graph for a slightly modified
variant of the Haskell program in example 2.1 which defined the functions take
and from. The difference is that we do not encode the predecessor computation
into the function take, but use a function p to do this. This function works
by moving inwards as far as possible, then reducing the representation of the
number 1, which is S Z, to the term Z representing the number 0.

23

24 CHAPTER 3. PREVIOUS HASKELL TERMINATION APPROACH

Example 3.1 (take from with explicit predecessor computation).

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

from m = Cons m (from (S m))

take Z _ = Nil
take _ Nil = Nil
take n (Cons x xs) = Cons x (take (p n) xs)

p (S Z) = Z
p (S n) = S (p n)

The Termination Graph for the start term t = take u (from m) is shown
in figure 3.1. Its construction shall be explained in the following.

Figure 3.1: Termination Graph for take u (from m)

For the start term t in node A, we have already seen that the evaluation
position of this term is t|e(t) = u. Since we have to consider all possible instan-
tiations of this term, we do a Case split, according to the data constructors
that exist for the type of this term. The variable u has type Nats, so the con-
structors Z and S are inserted, yielding nodes B and C. For the node C, the first
rule of take is applicable, thus the result of this Eval step is node E. This does
not need any further analysis, since it is a terminating term. Thus, it is a leaf
in the Termination Graph.

For the node B, the second argument of take must be evaluated, such that
it can be decided whether the second rule of take is applicable or not. For

25

this purpose, the term from m is evaluated one step, therefore the node B is an
Eval step having the child node D. For node D, we see that the second rule
of take is not applicable, but the third rule is. Therefore, we do another Eval
step, resulting in node F. As said before, we want to allow evaluation inside of
constructors, thus we split into the different arguments of the constructor Cons.
The first argument is just the variable m which represents only H-terminating
terms by assumption. Therefore, it does not need to be inserted as a new node.
For the other argument, we do not see that it is directly H-terminating, thus
we make it the child G of node F. As we can see, the term in node G is an
instance of the term we already have in node A. We could continue and apply
the same steps over and over again. However, we want to construct a finite
graph. Thus, we allow to draw an instantiation edge, i.e., we identify the node
G as an instance of node A. But we must still regard those subterms which are
in the range of the matcher. This is, because these are bound to variables in the
instantiated term, and for these we assume that they are instantiated only with
H-terminating terms. Thus, we must show this property and create the children
H and I for this purpose. Node H is again H-terminating, since it contains only
constructors and variables.

For node I, the analysis is performed analogously: a case distinction is made
in order to determine the applicable rule for p, then evaluation steps apply these
rules. Here, we also have an Ins-node, i.e., a term that was identified as an
instance of a previous node in the graph, giving another cycle.

From this Termination Graph, DP problems are created. These correspond
to the strongly connected components (SCCs) of the Termination Graph. It
has to be shown that these SCCs cannot be traversed infinitely often. This
is equivalent to showing that the generated DP problems are finite. Since the
creation of DP problems is modified in this thesis, this property has to be proven
again. Proving the finiteness of DP problems is left to the DP Framework, which
incorporates many powerful techniques for this purpose. Thereby, whenever
improvements are made in the DP Framework, then these improve the power of
the Haskell termination analysis, as well.

In the above example for the start term take u (from m), we have two
SCCs, one for the function take, and another one for the function p. The latter
SCC cannot be traversed infinitely often, since there the function p is pushed
inwards until it reaches the term S Z, which is then replaced by Z. Thus, the
number of recursive calls is limited by the natural number that is represented
by its argument. This contains a variable which represents an H-terminating
term; therefore this number must be a natural number and cannot be infinite.
Furthermore, this function returns the argument decremented by one. This is
also the reason, why the SCC for take cannot be traversed infinitely often; its
first argument will be decreased in every recursive call. How the DP problems
are created is not shown here, it will be illustrated in the following Chapter and
a modified version of it will be presented in Chapter 6.

Chapter 4

Extension to Type Classes

In order to extend the approach of [GSSKT06] to type classes, an additional
expansion rule has to be specified for the construction of Termination Graphs.
Also, the type classes of a term must be considered in the other expansion rules.
This handling of type classes was already contained in [Swi05], but this chapter
shall introduce it into the notation of [GSSKT06]. Without loss of generality it is
assumed that type variables, class names, type constructors, function symbols,
and variables are pairwise disjoint.

4.1 Generating Class Instances

During the construction of the Termination Graph, we will face the problem,
that for a type variable with constraints we need to determine all possible class
instances this type variable might be instantiated with. In Haskell 98, only such
constraints are valid where the head symbol of the type after the class name is
a variable. Therefore, it is required to reduce constraints based on the instance
declarations in the Haskell program to this form, otherwise a type is not a valid
type, as required in [Jon03].

Example 4.1 (Reduction of class constraints). Consider the function plus,
which was presented in example 2.2 for different instances.

If we want to enter the ground term plus undefined undefined :: List a
in a Haskell interpreter, then we must add a class constraint to the type, oth-
erwise this is invalid. Since we want to use the function plus as defined
in the instance of the data type List a, an idea would be to use the term
plus undefined undefined :: Addition (List a) => List a.

However, this is not a valid term, because of the required reduction men-
tioned above. Therefore, we have to reduce the constraint according to the in-
stances in the program. The instance for the data typeList a has the declara-
tion instance Addition a => Addition (List a). Thus, we must add the
constraint for the contained elements. So our example term would have to be
plus undefined undefined :: Addition a => List a.

This reduction according to the instances of a Haskell program is formally
defined in the following.

27

28 CHAPTER 4. EXTENSION TO TYPE CLASSES

Definition 4.2 (reduce).

reduce(cs) = reduceStep∞(cs)

The above function reduceStep does a reduction of the class constraints ac-
cording to the instances defined in the Haskell program:

reduceStep((C ρ)] cs) = {(C1 ai1)σ, . . . , (Cn ain
)σ}] cs

if either

• an instance (C (T a1 . . . am)) exists in the Haskell program with class
constraints (C1 ai1), . . . , (Cn ain) for a type constructor T (n ≥ 0),

• σ matches (C (T a1 . . . am)) to (C ρ).

or

• n = 0,

• a class constraint (C ′ ρ) exists in cs,

• C ′ is a subclass of C.

As Haskell 98 neither allows overlapping instances nor cyclic classes, the
result of reduce(cs) = reduceStep∞(cs) always exists, it is reached after a finite
number of steps, and it is unique.

How this function works shall be shown in the next example.

Example 4.3 (Reduction of class constraints using reduce). We again make
use of the instances defined in example 2.2.

For the set of class constraints {Addition (List a)}, the above function
reduceStep is applicable once. Therefore, reduce({Addition (List a)}) =
{Addition a}), because for the type List a the program contains the instance
Addition a => Addition (List a). As can be observed, this was also done
in example 4.1.

In case of the set {Addition a, Multiplication a}, we have that for this
set reduce({Addition a, Multiplication a}) = {Multiplication a}, because
the class Multiplication is a subclass of the class Addition. This means
that the only class constraint that has to be considered is the class constraint
Multiplication a, since the other class constraint Addition a is fulfilled for
every type contained in the class Multiplication. Hence, we can drop the class
constraint Addition a.

Next, we want to select the possible instances for a class member function.
This is needed in order to decide on the set of rules that shall be used for the
current term.

Example 4.4 (Selection of instances). We want to analyze termination for
the start term (plus x y) :: (Addition a, HasZero a) => a with respect
to the Haskell program given in example 2.2.

In this term, the function plus refers to a class member of the type class
Addition, whose implementation depends on the type. Therefore, the idea is
to consider all possible types. So we enumerate all instances that exist for this
class, in our example the instances for the type Nats and for the type List a.

4.1. GENERATING CLASS INSTANCES 29

For a formal representation, the function “instances” enumerates all in-
stances of a class, with respect to a type. This type might have been instantiated
further, therefore we must instantiate types in a member type schema with the
most general unifier.

Definition 4.5 (instances).

instances(f, ρ) = {δ | f is a member of a class (C a),
f has the type ρf,C in (C a)
with disjunct variables from ρ,

(C ρ′) is an instance of (C a),
δ is the mgu of ρ and ρf,C [a/ρ′]}

This definition is now illustrated by applying it to the function plus in the
start term of example 4.4.

Example 4.6 (instances applied to example 4.4). In the start term of exam-
ple 4.4, the function plus has the type a -> a -> a. This type unifies with the
types of plus in the two instances of the class Addition, where for the instance
Nats we have Nats -> Nats -> Nats, and for the instance List b we have the
type List b -> List b -> List b. Hence,

instances(plus, a -> a -> a) = {[a/Nats], [a/List b]}

The most general unifier is used in the above definition, because it might
also be the case that a type in an instance is more general than the correspond-
ing type in the start term. So if we had a class A a containing a function
project :: a -> b -> a, then in the start term project x Z the function
project has the type a -> Nats -> a. But still, all instances would be appli-
cable. If we assume that only the data type Nats had an instance of the class A,
then

instances(project, a -> Nats -> a) = {[a/Nats, b/Nats]}

In the above example which generated the instances of plus for start term
(plus x y) :: (Addition a, HasZero a) => a, we see that also the instance
for the data type List b is considered, although there is no instance of the class
HasZero for this data type in the Haskell program. In order to consider as few
of these ill-typed terms as possible, we use the function “filter” to remove those
type substitutions where we are sure that they cannot be used in any ground
instance of the start term. For this selection, the function “filter” makes use of
the function “reduce” and implements the requirement discussed in example 4.1
that all class constraints must start with a type variable as head symbol.

Definition 4.7 (filter).

filter(S, cs) = {δ ∈ S | ∀(C ρ) ∈ reduce(csδ) :
(C ρ) is of the form (C (b ρ1 . . . ρnρ))
where b is a type variable and C is a class}

The condition that a remaining class constraint (C ρ) must be of the form
(C (b ρ1 . . . ρn)) rules out instances for which other constraints could not be
satisfied, as mentioned above. An example shall demonstrate, how the function
“filter” reduces the type substitutions that determine the different instances to
consider further.

30 CHAPTER 4. EXTENSION TO TYPE CLASSES

Example 4.8 (Filtering of instances). In this example, we consider the gen-
erated type substitutions that resulted from the function instances for the start
term (plus x y) :: (Addition a, HasZero a) => a, which were discussed
in example 4.6.

instances(plus, a -> a -> a) = {[a/Nats], [a/List b]}

For these substitutions, the function filter checks whether the new constraints
exist. For this purpose, it applies every substitution to the initial set of class
constraints, reduces these, and keeps only those where no type constructor occurs
as head symbol of a class constraint.

For the substitution δ1 = [a/Nats], we first reduce the class constraints:

reduce({Addition a, HasZero a}δ1)
= reduce({Addition Nats, HasZero Nats})
= reduce({HasZero Nats}) (because of instance Addition Nats)

= reduce(∅) (because of instance HasZero Nats)

= ∅

Trivially, all conditions in filter({δ1}, {Addition a, HasZero a}) are ful-
filled, hence this type substitution introduces an instance whose implementation
of plus must be considered.

For δ2 = [a/List b], we again reduce the instantiated class constraints:

reduce({Addition a, HasZero a}δ2)
= reduce({Addition (List b), HasZero (List b)})
= reduce({Addition b, HasZero (List b)})

(because of instance Addition b => Addition (List b))

= {Addition b, HasZero (List b)}

Here, no further reductions are possible. For the first remaining constraint,
it holds that it has the form C (b ρ1 . . . ρn), where C = Addition, b = b, and
n = 0. The other remaining constraint HasZero (List b) does not have the
form C (b ρ1 . . . ρn) for a type variable b. Thus, this is an instance that does not
need not be considered. And in fact, there is no instance of the class HasZero
for the type List b, which means that its implementation of the function plus
cannot be used for the given term.

When a term is evaluated or split into its subterms, only those class con-
straints need to be considered further, for which the type variables still exist in
the term.

Example 4.9 (Reducing class constraints to covered class constraints). We
extend the Haskell program from example 2.2 defining the function plus by
another function.

f :: (Addition a, Multiplication b) => a -> b -> a
f x y = plus x x

Here, in the term plus x x on the right-hand side of the rule, we have that
the constraint Multiplication b is no longer of interest, as the type b is not
present. Therefore, this class constraint need not be considered further.

4.2. EXTENDING THE TERMINATION GRAPH 31

This reduction to the types that still exist in the term is performed by the
function coveredConstraints.

Definition 4.10 (coveredConstraints). For a set cs of class constraints and a
set of variables X, the function stepcs determines all variables of constraints
that share a variable with X:

stepcs(X) := X ∪
⋃

c ∈ cs
V(c) ∩ X 6= ∅

VT(c)

This function reaches a fixed point after a finite number of steps, since it is
bounded by cs.

Using the variables that the class constraints share with the type variables,
we can define the set of class constraints that are still considered as covered for
a term:

coveredConstraints(cs⇒t) =
{

c ∈ cs
∣∣∣ step∞cs(VT(t)) ⊇ VT(c)

}
The example below shows how this function works on the function given in

example 4.9.

Example 4.11 (Using coveredConstraints to reduce class constraints). We now
show how to apply coveredConstraints to the right-hand side of the rule given
in example 4.9.

For the term t = (Addition a, Multiplication b)⇒
plus x x

a
, the set of type vari-

ables occuring in t is step∞cs(VT(t)) = {a}. Using these type variables, we have
collectCCs(t) = {Addition a}. Thus, it has been found out that the class con-
straint Multiplication b does not need to be considered further.

4.2 Extending the Termination Graph

In the Termination Graph, type classes are handled in a similar way as the dis-
tinction of data type constructors. When the term on the evaluation position is
a variable, we enumerate all possible constructor terms. Then, the instantiation
of the variable will determine which rule is applicable. For type classes, we
now might have a term on the evaluation position, where a type variable with
some class constraint has to be evaluated. Then, we will enumerate all possible
instances of this class. Therefore, the instantiation of this type variable will
determine which set of rules is to be applied to the term.

Using the functions for type classes that were defined previously, we extend
definition 4 of [GSSKT06] in order to include the handling of type classes.
Again, this was already described in [Swi05], but here it is included in the
notation of [GSSKT06], where type classes were not considered.

Definition 4.12 (Termination Graph with type classes). Let TG be a graph
with a leaf marked with a term t. We say that TG can be expanded to TG′

(denoted “TG ⇒ TG′”) if TG′ results from TG by adding new child nodes
marked with the elements of ch(t) and by adding edges from t to each element
of ch(t). Only in the Ins-rule, we also permit to add an edge to an already
existing node, which may then lead to cycles. All edges are marked by the identity

32 CHAPTER 4. EXTENSION TO TYPE CLASSES

substitution unless stated otherwise. If not explicitly stated otherwise, all child
nodes in ch(t) are assigned the set of class constraints that are still covered by
type variables contained in the types of subterms of the child, i.e., for a child
cs⇒t′ ∈ ch(t), this child node is not labelled with cs⇒t′, but instead it is inserted
into the Termination Graph labelled with coveredConstraints(cs,t′)⇒t′.

Eval: ch(t) = {t̃}, if t = (f t1 . . . tn), f is a defined symbol, n ≥ arity(f),
t →H t̃

Case: ch(t) = {tσ1, . . . , tσk}, if t = (f t1 . . . tn), f is a defined function
symbol, n ≥ arity(f), t|e(t) is a variable x of type “T ρ1 . . . ρm” for a type
constructor T , the type constructor T has the data constructors ci of arity ni

(where 1 ≤ i ≤ k), and σi = [x/(ci x1 . . . xni)] for fresh pairwise different
variables x1, . . . , xni . The edge from t to tσi is marked with the substitution σi.

TyCase: ch(cs⇒t) = {cs1⇒t, . . . , csm⇒t} if t = (f t1 . . . tn), f is a de-
fined function symbol, n ≥ arity(f), t|e(t) = (g s1 . . . sv) has type ρ[a] for a
type variable a, such that {δ1, . . . , δm} = filter(instances(g, ρ[a]), cs) and csi =
reduce(csδi) for 1 ≤ i ≤ m. The edge from cs⇒t to csi⇒t is marked with δi.

VarExp: ch(t) = {t x}, if t = (f t1 . . . tn), f is a defined function symbol,
n < arity(f), and x is a fresh variable.

ParSplit: ch(t) = {t1, . . . , tn}, if t = (c t1 . . . tn), c is a constructor or
variable, and n > 0.

Ins: ch(cs⇒t) = {cs1⇒s1, . . . , csm⇒sm, ecs⇒t̃}, if t = (f t1 . . . tn), t is not
an error term, f is a defined symbol, n ≥ arity(f), t = t̃σ for some term t̃,
σ = [x1/s1, . . . , xm/sm, a1/ρ1, . . . , al/ρl], where xi ∈ VH(t̃) and aj ∈ VT(t̃) for
all i, j. Moreover, either t̃ = (x y) for fresh variables x and y, or t̃ is an Eval-
node or t̃ is a Case-node, but not a TyCase-node1, and all paths starting in
t̃ reach an Eval-node or a leaf with an error term after traversing only Case-
and TyCase-nodes.2 The edge from t to t̃ is called an instantiation edge.
If the graph already contained a node marked with t̃, then we permit to reuse
this node in the Ins-rule. So in this case, instead of adding a new child marked
with t̃, one may add an edge from t to the already existing node t̃.
The set of class constraints c̃s must be the same or more general than the set of
class constraints cs.

Let TGt be the graph with a single node marked with t and no edges. TG is a
Termination Graph for t iff TGt ⇒∗ TG and TG is in normal form w.r.t. ⇒.

An example for a Termination Graph containing a TyCase-node is given in
the following.

Example 4.13 (Termination Graph containing TyCase-nodes). We want to
show termination for the start term plus x y w.r.t. the program given in ex-
ample 2.2.

From this start term, the Termination Graph shown in figure 4.1 is built,
where the class constraints are shown for every node. In this graph, one can
observe two TyCase-nodes. The first one occurs directly at node A containing
the start term, because for this term the instance to use is unknown, which was
already discussed in example 4.4 for a similar term.

1This shall ensure that once a type is fixed, the corresponding definition of a class member
function is used

2Thereby ensuring that all cycles contain at least one Eval -node

4.2. EXTENDING THE TERMINATION GRAPH 33

Figure 4.1: Termination Graph for plus x y containing TyCase-nodes

For the other TyCase-node B in the graph, the same distinction must be
made. This node results from the rule

plus (Cons x xs) (Cons y ys) = Cons (plus x y) (plus xs ys)
for the data type List a. Here, the first argument of the constructor Cons on
the right-hand side of this rule has the type b. Therefore, the same analysis
as for node A has to be made, and therefore the resulting nodes are directly
instances of the nodes that resulted from the TyCase expansion at node A.

The correctness of the extension to type classes will not be proven here, it
was already proven in [Swi05] that introducing this case distinction for type
variables is correct. In this thesis, the proof of correctness will be included in
chapter 6, where renaming is introduced. There, it will be shown that when
renaming is applied and the TyCase-expansion is added, then termination of a
start term for a Haskell program still follows from the absence of infinite chains
in the created DP problems.

Furthermore, it was shown in [Swi05, GSSKT06] that for every start term a
Termination Graph can be built. In order to show this, one can introduce a node
f x1 . . . xn for every defined function symbol f of arity n in the Haskell program,
and a node x y. After having constructed all patterns of such a function,
one then can use ParSplit-nodes to dispose constructors and variables. Then,
instantiation edges are added, if the arity is fulfilled. In case the arity of the
function is less than the number of terms that are supplied as arguments, then a
number of instantiation edges to the node x y are inserted. Otherwise, it might
be the case that too few arguments are applied. Then, a number of VarExp-
expansions will be used to bring the term to its defined function’s arity.

For ParSplit-nodes with variable head, the result of this application is
unknown. Therefore, we want to introduce fresh variables that represent the

34 CHAPTER 4. EXTENSION TO TYPE CLASSES

unknown result. Since these variables are free on the right-hand side, we want
to include them always in the Dependency Pairs that will be created from the
Termination Graph. For this purpose, we will use the set of predecessors of
ParSplit-nodes with variable head, which is defined in the following. This was
already considered in [Swi05].

Definition 4.14 (UTG and PUTG). Let TG be a Termination Graph.
The set UTG of all ParSplit-nodes with variable head is defined as

UTG = {t ∈ TG | t is a ParSplit-node with t = (x t1 . . . tn)
where x is a variable and n > 0}

The set PUTG contains all nodes s for which a node t ∈ UTG exists, such
that a path from s to t exists in TG. Please note that the length of this path
may also be zero, i.e., UTG ⊆ PUTG.

The following example shows, how this function works and where free vari-
ables appear. Please note that all examples in the following are presented in a
non-applicative form to increase readability.

Example 4.15 (ParSplit-node with variable head). As an example for a func-
tion, where we have a ParSplit-node with variable head, we want to consider
the start term foldN n e fs for the following Haskell program.

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

appN :: (Nats -> Nats) -> Nats -> Nats -> Nats
appN _ Z m = m
appN f (S n) m = appN n f (f m)

foldN :: Nats -> Nats -> List (Nats -> Nats) -> Nats
foldN n e Nil = e
foldN n e (Cons f fs) = foldN n (appN f n e) fs

As can be seen in the Termination Graph shown in figure 4.2, node M is a
ParSplit-node with variable head. Thus, we have that M ∈ UTG. Furthermore,
it especially holds that G ∈ PUTG, since a path exists from node G to node M.
When we now create a Dependency Pair for the path from node A to node E,
then the subterm appN fs0 n e in node G is replaced by a fresh variable on the
right-hand side of the Dependency Pair. This enables us to get to a DP problem
where every variable on the right-hand side also occurs on the left-hand side by
filtering this argument position. So the Dependency Pair before filtering is

foldN(n, e, Cons(fs0, fs1)) → foldN(n, y, fs1)

where now the second argument position of foldN is filtered, such that we get
the Dependency Pair

foldN(n, Cons(fs0, fs1)) → foldN(n, fs1)

A detailed description of the filtering is given in Chapter 6, where renaming
is introduced.

4.2. EXTENDING THE TERMINATION GRAPH 35

Figure 4.2: Termination Graph for foldN n e fs containing a ParSplit-node
with variable head

Please note that although all functions presented in the following are ex-
tended to also cope with TyCase-nodes in the Termination Graph, the types
are not considered in the created DP problems. Therefore, the running example
of this section does not contain any type classes to keep the examples smaller.

The function ev accumulates Eval -expansions in the Termination Graph.
These steps are then merged into one rule, since successive Eval -steps are al-
ways applicable. Also, if we can evaluate subterms on a right-hand side of a
Dependency Pair further, then we can do so and use the evaluated subterm.
This is illustrated in the following example.

Example 4.16 (Evaluation of subterms). We reconsider example 3.1 again,
but replace the rules for the function p by the new rule p (S x) = x.

In the Termination Graph for the start term take u (from m) we see at
node I the computation of the predecessor using the new function p. However,
all information for this evaluation is available, which is why this node is directly
evaluated by an Eval-expansion. This evaluation does not need to be reflected
in the generated DP problem, since we know how this term is evaluated, namely
the term node J is labelled with will always be the result. So instead of the
DP problem

P = { take(S(n), from(m)) → take(p(S(n)), from(S(m))) }
R = { p(S(n)) → n }

we can directly generate the following DP problem that has no rules and directly
decrements the first argument of take:

P = { take(S(n), from(m)) → take(n, from(S(m))) }
R = ∅

36 CHAPTER 4. EXTENSION TO TYPE CLASSES

Figure 4.3: Termination Graph for take u (from m) with a simple predecessor
computation

As stated above, applications which result in unknown values shall already
be included in the created Dependency Pairs. For this purpose, the rule of
ev for Ins-nodes is changed compared to its definition in [GSSKT06], since a
right-hand side of a Dependency Pair is created from such a node. Then, we
only have to deal with free variables on right-hand sides of Dependency Pairs,
instead of also having them on right-hand sides of rules.

This leads to the following formal definition of the function ev, where we
have the desired effects that evaluations are performed as far as they are known
and free variables are directly inserted at Ins-nodes.

Definition 4.17 (ev with type classes). Let TG be a Termination Graph, let t
be a node in it. Then:

ev(t) =



x, for a fresh variable x, if t ∈ UTG

t, if t is a leaf, a Case-node, a VarExp-node, or a TyCase-
node

ev(t̃), if t is an Eval-node with child t̃

t̃[x1/s1, . . . , xn/sn], if t = t̃[x1/t1, . . . , xn/tn] and either
t is an Ins-node with the children t1, . . . , tn, t̃, or
t is a ParSplit-node, t̃ = (c x1 . . . xn) for a constructor c

si = yi for a fresh variable yi if ti ∈ PUTG

si = ev(ti), otherwise

4.2. EXTENDING THE TERMINATION GRAPH 37

With this definition of ev, we have that in example 4.16 the term created for
node G is ev(G) = take n (from (S m)). This removes the necessity to add
rules for this Dependency Pair, giving the DP problem that was already shown
in the example. However, this is not always possible. Therefore, we must have
the function con describing from which nodes rules have to be created. The
following example shows, how this works.

Example 4.18 (Reading rules from Termination Graphs). We consider the
start term take u (from m) again for the Haskell program given in example 3.1,
where we use the more complicated predecessor computation given there.

In the Termination Graph for this start term which was shown in figure 3.1
node I now is a Case-node. Therefore, we do not know which rule is applicable
to this term that is a subterm of the Ins-node G. Therefore, we stop at node
I with the function ev, as can be seen in the definition of this function above.
Then the function con collects this node, in order to create rules starting in this
node.

The following definition for the function con differs from the definition given
in [GSSKT06] by its adaption to type classes, as well. Furthermore, no rules
must be created from terms that are a predecessor of an application with un-
known result, since these are already approximated by a fresh variable in the
created Dependency Pair, as was shown in example 4.15. Thus, no continuation
is needed for such nodes.

Definition 4.19 (con with type classes). Let TG be a Termination Graph with
a node t. Then:

con(t) =



∅, if t is a VarExp-node, or t ∈ PUTG

{t}, if t is a Case-node or a TyCase-node

{t̃} ∪ con(t1) ∪ . . . ∪ con(tn), if t is an Ins-node with the
children t1, . . . , tn, t̃ and an instantiation edge from t to t̃⋃

t′ child of t con(t′), otherwise

When we now apply this function to the node G of the Termination Graph
given in figure 3.1, then we have that it collects the node I, which is the desired
behavior as stated in example 4.18.

To read rules starting in a node that was collected using the function con,
the notion of a rule path is used. In [GSSKT06], a rule path is a path in the
Termination Graph that starts at an Eval - or a Case-node and reaches the first
node that is not an Eval - or a Case-node. So for example in the Termination
Graph in figure 3.1, there are two rule paths starting in node I: the first one
goes from node I to node L and the second rule path also starts in node I and
ends in node M.

The definition of a rule path given in [GSSKT06] has to be extended as well
in order to be able to cope with type classes. Here, TyCase-nodes are handled
in the same way as Case-nodes.

38 CHAPTER 4. EXTENSION TO TYPE CLASSES

Definition 4.20 (Rule Path considering type classes). Let TG be a Termination
Graph.

A path from a node marked with s to a node marked with t in TG is a
rule path if s and all other nodes on the path except t are Eval-, Case-, or
TyCase-nodes and t is no Eval-, Case-, or TyCase-node. So t may also be
a leaf.

Thereby, TyCase-nodes are like Case-nodes; the only difference is that the
case analysis is performed on type variables rather than on variables contained
in the term. Since it is assumed that type variables and term variables have
different names, the type substitutions the edges are marked with only apply to
type variables.

Finally, we have to formally define from which nodes we have to read De-
pendency Pairs. As already indicated above, we have that Ins-nodes are a
call to some defined function. We want to prove that these calls cannot occur
infinitely often. Since the Termination Graph is finite, an infinite evaluation
can only occur in a Strongly Connected Component (SCC) of the Termination
Graph. Thus, we create Dependency Pairs for the paths to Ins-nodes in these
SCCs. For example in the Termination Graph shown in figure 3.1 we have two
SCCs: one consisting of the nodes A,B,D,F,G and another one for the nodes
I,J,L,N. In node G, for example, a call to the function take is made again. This
call comes from the node A. Generally, a call to another function results from a
path starting in a node with an incoming instantiation edge. Therefore, we say
that a DP Path starts in a node with an incoming instantiation edge and goes
to a node with an outgoing instantiation edge, without traversing any of those
edges. So we have that for the first SCC in the example a DP path exists from
node A to node G, and in the other SCC we have a DP path from node I to
node N.

Compared to the definition of a DP Path given in [GSSKT06], the following
definition remains unchanged but still handles the extension to type classes.
This is, because a DP Path only forbids instantiation edges, but does not need
other distinctions about the type of a node.

Definition 4.21 (DP Path, [GSSKT06]). Let TG be a Termination Graph, let
G′ be an SCC in it.

A path p in G′ from a node s to a node t is a DP Path, iff p does not traverse
instantiation edges, s has an incoming instantiation edge in G′, and t has an
outgoing instantiation edge in G′.

Using these definitions of Rule Paths and DP Paths, we can read DP prob-
lems from a Termination Graph. A DP problem is created for every SCC of
the Termination Graph. In the SCC, we build a Dependency Pair for every
DP Path. On such a DP Path we have to consider the cases that led to another
call to a defined function. Therefore, the substitutions the edges are labelled
with are collected along the way and applied to the term the start node of the
DP path was labelled with. This is shown in the following example.

Example 4.22 (Reading DP problems). We now want to read DP problems
from the Termination Graph shown in figure 3.1, which was constructed for the
start term take u (from m) and the Haskell program shown in example 3.1.

In the first SCC, we have a DP Path from node A to node G. This path is
labelled with the substitution δ = [u/S u0]. Therefore, the left-hand side of our

4.2. EXTENDING THE TERMINATION GRAPH 39

created Dependency Pair is (take u (from m)) δ = take (S u0) (from m).
The right hand side is constructed from the term at node G. For this term, we
use the function ev to further evaluate the subterms. Here, the function ev does
not change the term as compared to the term of node G, so the Dependency Pair
for this DP Path is

take(S(u0), from(m)) → take(p(S(u0)), from(S(m)))

In order to check whether this Dependency Pair can call itself again, we must
have the add rules for p to the DP problem. For this purpose we consider those
nodes, from which Rule Paths start for all of the children of the Ins-node G.
This collection of nodes is performed by the function con. In the case of node
H, there are no nodes in con(H), as there are no defined functions contained.
For node I we have con(I) = {I}, so we have to add rules for all Rule Paths
starting in this node.

For the Rule Path from node I to node M, we also collect the substitutions
on the path and apply it to the term of node I. The right hand side is again
evaluated as far as we can, however in this case the application of ev to node
M does not change the term. Hence, we add the following rule to the created
DP problem.

p(S(Z) → Z

For the other Rule Path from node I to node L, the substitutions are collected
as well and applied to the term of node I. Hence, the following rule is also added
to the created DP problem.

p(S(S(u00))) → S(p(S(u00)))

However, we have to further follow the children of node L, since we must be
able to evaluate the right hand side of the rule further. So we again search for
nodes from which rules have to be created starting in node N. At this node, we
have con(N) = {I}. For this node, we already added all rules.

Hence, the DP problem for this SCC is the following:

P = { take(S(u0), from(m)) → take(p(S(u0)), from(S(m))) }
R = { p(S(Z) → Z

p(S(S(u00))) → S(p(S(u00))) }

For the SCC containing the function p, a similar construction yields the
following DP problem:

P = { p(S(S(u00))) → p(S(u00)) }
R = ∅

Formally, this creation of DP problems is performed by the function dp that
makes use of the function rl to create the required rules. The addition of type
classes to the Termination Graph does not affect the functions dp and rl. The
difference in their definitions as compared to those given in [GSSKT06] is, that
DP problems as defined in [GTSK05b] are used.

Definition 4.23 (dp, [GSSKT06]). Let TG be a Termination Graph with an
SCC G′.

We define dpG′ = (P, ∅,R, a), where P and R are the smallest sets such
that

40 CHAPTER 4. EXTENSION TO TYPE CLASSES

• sσ1 . . . σm → ev(t) ∈ P, and

• rl(q) ⊆ R,

whenever G′ contains a DP path from s to t labelled with the substitu-
tions σ1, . . . , σm, t = t̃[x1/t1, . . . , xn/tn] has an instantiation edge to t̃, and
q ∈ con(t1) ∪ . . . ∪ con(tn).

Definition 4.24 (rl, [GSSKT06]). Let TG be a Termination Graph.
For a node s, we define rl(s) as the smallest set satisfying

• sσ1 . . . σm → ev(t) ∈ rl(s), and

• rl(q) ⊆ rl(s),

whenever there is a rule path from s to t labelled with the substitutions
σ1, . . . , σm, and q ∈ con(s).

In order to ease the presentation in the following chapters, we define a few
shorthand notations.

Definition 4.25. Let TG be a Termination Graph.
We say that a set of rules U has been generated from TG, iff an SCC G′

exists in TG such that dpG′ = (P, ∅,R, a) and either U = P or U = R.
A DP problem (P, ∅,R, a) is said to have resulted from TG, iff an SCC G′

exists in TG such that dpG′ = (P, ∅,R, a).

The extensions of the Termination Graph and the creation of DP problems,
which were presented in this chapter, will be considered in the proofs of chapter 6
that introduces renaming. Thus, those proofs also prove the correctness of
these extensions, i.e., from the finiteness of the created DP problems, it can
still be concluded that all nodes in the originating Termination Graph are H-
terminating.

But first, the next chapter shows that a Haskell program can be reduced to
those elements that might be needed for the evaluation of the given start term.
This means that all other elements can be disregarded, making the size of the
problem smaller and therefore the analysis faster.

Chapter 5

Reduction to Necessary
Components

Often, a Haskell program imports a large library, but only makes use of a few
functions that are defined within that library. Thus, a lot of superfluous func-
tions are in the scope of the current Haskell program, which are never used by
the start term that is to be analyzed. A library that is automatically imported
in every Haskell program is the Prelude, which provides a large set of functions
for very different purposes. However, virtually no Haskell program uses all of
the offered functions. Therefore, the idea is to restrict the analysis to only those
functions which might be used in the evaluation of the start term.

This chapter shows that a Haskell program can be reduced to those necessary
components which are needed in order to evaluate a given start term. This eases
the analysis, because fewer rules and cases have to be considered. Since it cannot
be decided which rules and classes must be included and which are not used,
an overapproximation is done, such that all possibly used functions, data types,
and classes are included.

This is formalized in the following definition.

Definition 5.1 (Necessary Components reduction). Let HP be a Haskell-
Program.

We define the reduction necRed(t) of the Haskell program according to a term
t. Here, if for a defined function f it holds that f ∈ necRed(t), then all rules
for f are in the reduced Haskell program. Furthermore, if a type T ∈ necRed(t),
then the data definition for this type is also contained in the reduced Haskell
program. Last, if a class or an instance C ρ ∈ necRed(t), then this class or this
instance is included in the reduced Haskell program, respectively.

The reduction of HP to the necessary components for a term t is defined as
follows:

• necRed(t) ⊇ necRed(t′), for all subterms t′ of t.

• necRed(t) 3 error, where error is the error function defined in the Haskell
Prelude.

• necRed(t) 3 f , if t contains the defined function symbol f .

41

42 CHAPTER 5. REDUCTION TO NECESSARY COMPONENTS

• necRed(t) ⊇ necRed(s), if f ∈ necRed(t) for a defined function symbol f ,
where a rule of f with the right-hand side s exists in HP .

• necRed(t) 3 T , if t = s
τ

and τ contains the type constructor T .

• necRed(t) 3 T ′, if T ∈ necRed(t) for a type constructor T and the data
constructor definition of the type starting with T contains the type con-
structor T ′.

• necRed(t) 3 c, if T ∈ necRed(t) for a type constructor T and the type
starting with T contains the data constructor c.

• necRed(t) 3 (C a), if t has a class constraint of the class C.

• necRed(t) 3 (C ρ), if (C a) ∈ necRed(t) for a class C and (C ρ) is an
instance of C.

• necRed(t) 3 T , if an instance (C (T a1 . . . am)) exists in necRed(t).

• necRed(t) 3 (C ′ a), if (C a) ∈ necRed(t) and the class C has a class
constraint containing the class C ′, or if an instance (C ρ) ∈ necRed(t)
exists which has a class constraint containing the class C ′.

The following example shall illustrate how the reduction to the necessary
components works.

Example 5.2 (Reduction to Necessary Components). Consider the Haskell
program from example 2.2, where we want to collect the necessary components
for the start term t =plus :: List a -> List a -> List a.

• error ∈ necRed(t), as this holds regardless of the term.

• List ∈ necRed(t), because this type constructor occurs in the type of the
term t.

• Nil, Cons ∈ necRed(t), since these are the data constructor of the type
List that is in necRed(t).

• plus
List a -> List a -> List a

∈ necRed(t), as this defined function occurs in the start
term.

• necRed(Cons (plus x y) (plus xs ys)) ⊆ necRed(t), since this is a
right-hand side of a rule for the above function plus.

• necRed(Addition a⇒
plus x y

a
) ⊆ necRed(t), as this is a subterm of the

above term.

• Addition a ∈ necRed(t), because of the above function plus that has the
class constraint Addition a.

• Addition Nats, Addition (List a) ∈ necRed(t), as these are instances
of the type class Addition a.

• Nats ∈ necRed(t), as the instance Addition Nats is in necRed(t).

• Z, S ∈ necRed(t), since these are the data constructors for Nats.

43

These are all components of the Haskell program that have to be regarded.
Thus, the reduced Haskell program is the following:

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

class Addition a where
plus :: a -> a -> a

instance Addition Nats where
plus Z y = y
plus (S x) y = S (plus x y)

instance Addition a => Addition (List a) where
plus Nil Nil = Nil
plus (Cons x xs) (Cons y ys) = Cons (plus x y) (plus xs ys)

The reduction to the necessary components does not affect the termination
behavior. This will be shown for the Termination Graph with the start term t,
for which the necessary components are computed. For this purpose, a property
of necRed on Termination Graphs is shown first, which is used in the proof. In
the proof of this lemma, the extension to type classes is also considered.

Lemma 5.3 (Transitivity of necRed in Termination Graphs). Let TG be a
Termination Graph for a start term t.

Then for every node cs⇒s in TG and every child cs′⇒s′ of cs⇒s it holds that
necRed(cs′⇒s′) ⊆ necRed(cs⇒s).

Proof. Case analysis according to the expansion rule applied to cs⇒s is used.

Eval
In the case of an Eval -node, a rule (f t1 . . . tn) = r for a defined function symbol
f must exist which is applied to s|e(s) = (f t1 . . . tn)σ. Therefore, the child s′ has
the form s[rσ]e(s). Now necRed(s′) ⊆ necRed(s) ∪ necRed(rσ), and since r is a
right-hand side of a defined function symbol in s, necRed(s) ⊇ necRed(r). Since
for all variables x, σ(x) is a subterm of s, it holds that necRed(s) ⊇ necRed(s′).

Case
Here, s|e(s) = x for a variable x of type (T a1 . . . am)ρ. Therefore, T ∈ necRed(s)
and thus c ∈ necRed(s) for all data constructors c of the type (T a1 . . . am).
For every child (s′, cs) of (s, cs) it holds that s′ = sδ where δ is of the form
[x/(c′ x1 . . . xn)] for a data constructor c′ of the type (T a1 . . . am) and fresh
variables x1, . . . , xn. All type constructors and therefore also the accompanying
data constructors of the type of a variable xi are also contained in necRed(s),
since these type constructors must also appear in the data constructor definition
of the type (T a1 . . . am). Thus necRed(s) ⊇ necRed(s′).

TyCase
In this case, s|e(s) = (g s1 . . . sn) for a defined function symbol g that is a
member of a class (C a) ∈ cs. Therefore C ∈ necRed(s), which implies that
every instance (C ρ) of the class C is contained in necRed(s). As the inclusion

44 CHAPTER 5. REDUCTION TO NECESSARY COMPONENTS

of classes is transitively closed, necRed(s) ⊇ necRed(s′) for every child cs′⇒s′

of cs⇒s where s′ = s and cs′ = cs[a/ρ].

VarExp
Now s = (f s1 . . . sn′) where the defined function symbol f has arity n > n′.
For the only child cs⇒s′ of cs⇒s it holds that s′ = (s x) for a fresh variable x
of type (T a1 . . . am). This type is specified in the type of f , therefore it is also
contained in necRed(s), yielding necRed(s) ⊇ necRed(s′).

ParSplit
For a ParSplit-node the term s has the form (c s1 . . . sn) where c is a data
constructor or a variable. The children of cs⇒s are cs⇒si for 1 ≤ i ≤ n. Since
every si is a subterm of s, the definition of necRed directly gives necRed(s) ⊇
necRed(si).

Ins
The term s now has the form s̃[x1/s1, . . . , xn/sn] and the children s1, . . . , sn, s̃.
For every si the same argument as in the case for ParSplit-nodes it follows
that necRed(s) ⊇ necRed(si). For the term s̃ it also holds that necRed(s) ⊇
necRed(s̃), since the types of the variables x1, . . . , xn are the same as those of
s1, . . . , sn, the class constraints implied by s̃ are a subset of the class constraints
implied by s, and all defined function symbols in s̃ are also contained in s.

From this lemma it follows that the Termination Graph can already be built
with the reduced program.

Theorem 5.4 (necRed preserves Termination Graphs). Let HP be a Haskell-
Program, TG be a Termination Graph for the Haskell-Program HP with the
start term t.

Then TG is also a Termination Graph for the Haskell-Program necRed(t)
with the start term t.

Proof. The proposition follows directly from lemma 5.3, since necRed(t) ⊇
necRed(s) for every node s in the Termination Graph TG.

Therefore, every edge between nodes in TG depends only on elements from
necRed(t).

The presented reduction to the necessary components improves the speed
of the analysis when using large libraries, from which only a few functions and
types are used. Especially for the Prelude, this is the case most of the time,
since it contains functions which are seldomly used together in a program and
do not depend on each other.

Thus, it suffices to construct the Termination Graph for a start term using
only the reduced Haskell program. This results in a faster construction, because
less memory is occupied and fewer rules have to be considered when a term is
to be evaluated.

Chapter 6

Renaming

For Termination Graphs, it holds that an instance of a term can only be evalu-
ated to an instance of another term, if there is a path from the first term to the
other term. Furthermore, we might have that an SCC is built from a number
of cycles, where the evaluation must leave one cycle in order to get to another
cycle. However, it might be the case that the terms occuring on these cycles
might match each other. Then, the evaluation in the DP problem for that SCC
might switch between the rules for the different cycles, while in the original
program this was not possible.

In order to distinguish such separated cycles in an SCC, the idea is to rename
defined functions in the resulting DP problem, such that a left-hand side of a
Dependency Pair can only be reached if the terms resulted from nodes that were
connected via an instantiation edge. In order to separate cycles, different nodes
are assigned different names, except for the case where there is an instantiation
edge, i.e., where we have explicitly identified a term as an instance of another
term.

Example 6.1 (Different cycles in Termination Graph). For the following Haskell
program, the start term f x’ y’ shall be proven terminating.

data Nats = Z | S Nats

class Terminate a where
terminate :: Nats -> Nats -> a

instance Terminate Bool where
terminate (S x) y = terminate x (S y)
terminate Z y = f Zero Zero

instance Terminate Nats where
terminate x (S y) = terminate (S x) y
terminate x Z = f Zero Zero

f :: Terminate a => Nats -> Nats -> a
f (S x) (S y) = terminate x y

45

46 CHAPTER 6. RENAMING

As we can see in the program, the call from the function f to the function
terminate is dependent on the return type of f. However, once an implemen-
tation of the function terminate has been chosen, this implementation does not
call the other implementation, because the call to terminate on the right-hand
sides then always have the same return type as the function f.

Figure 6.1: Termination Graph for f x’ y’, illustrating renaming

The Termination Graph is sketched in figure 6.1. Here, the full case analysis
for f x’ y’ has been left out to increase readability; all other cases would lead
to the term error [].

This Termination Graph contains exactly one SCC. For this SCC, the fol-
lowing DP problem is created without renaming:

P = { f(S(x), S(Z)) → f(Z,Z)
f(S(Z), S(y)) → f(Z,Z)
f(S(x), S(S(y0))) → terminate(S(x), y0)
f(S(S(x0)), S(y)) → terminate(x0, S(y))
terminate(x, S(y0)) → terminate(S(x), y0)
terminate(x,Z) → f(Z,Z)
terminate(S(x0), y) → terminate(x0, S(y))
terminate(Z, y) → f(Z,Z) }

R = ∅

47

It can be observed that in this DP problem, the Dependency Pairs starting
with terminate reflect both instances. Therefore, an infinite chain exists:

terminate(S(Z), Z) →P terminate(Z, S(Z))
→P terminate(S(Z), Z)
→P . . .

The infinite chain exists only, because the instances of the function terminate
can call each other, which is not possible in the original Haskell program. This
can also be observed in the Termination Graph, where the cycles corresponding
to the recursive calls of terminate are not connected via an instantiation edge.
In order to reflect this in the created DP problem, different function names shall
be assigned to the different cycles, such that the overlap of the names does not
make the cycles overlap.

So if we assign the new names “new terminate0” and “new terminate1”
to the two cycles, then the created DP problem would look as follows:

P = { f(S(x), S(Z)) → f(Z,Z)
f(S(Z), S(y)) → f(Z,Z)
f(S(x), S(S(y0))) → new terminate0(S(x), y0)
f(S(S(x0)), S(y)) → new terminate1(x0, S(y))
new terminate0(x, S(y0)) → new terminate0(S(x), y0)
new terminate0(x,Z) → f(Z,Z)
new terminate1(S(x0), y) → new terminate1(x0, S(y))
new terminate1(Z, y) → f(Z,Z) }

R = ∅

Here, now the two cycles for the two instances of terminate are separated
by these names and cannot call each other. This renamed DP problem is finite,
as can be shown by the Size-Change processor [TG05], for example.

Furthermore, not all arguments of a term are required for the evaluation:
Only the substitutions a DP or rule path was labelled with determine the appli-
cable rule. Therefore, only these subterms shall be considered, and not the com-
plete term. Because substitutions only change variables of a term, only the vari-
ables have to be present in the resulting term. As we will see in the following, this
will lead to first-order DP problems which are better suited for automatic termi-
nation analysis than the previously used applicative DP problems. This is the
case, because the Dependency Graph can be constructed more efficiently. The
Dependency Graph for applicative DP problems [GTSK05a] entails a large num-
ber of unifications, whereas these unifications can already be avoided if the head
symbols are different. Furthermore, we no longer have the problem of functions
being used in different arities, which makes the A-transformation [GTSK05a]
from applicative DP problems to first-order DP problems fail. Then the Re-
duction Pair processor [GTSK05b] is less powerful, because standard reduction
orders focus on the root symbol, as is also mentioned in [GTSK05a]. An example
where the A-Transformation is not applicable is given below.

Example 6.2 (Renaming collecting only variables). Consider the following
Haskell program, which defines the addition of two natural numbers by using a
higher-order function. For this program, termination of the start term add n m
shall be analyzed.

48 CHAPTER 6. RENAMING

data Nats = Z | S Nats

appN :: (Nats -> Nats) -> Nats -> Nats -> Nats
appN _ Z m = m
appN f (S n) m = appN f n (f m)

add :: Nats -> Nats -> Nats
add = appN S

Figure 6.2: Termination Graph for add n m, using a higher-order function

For the given start term, the Termination Graph shown in figure 6.2 is con-
structed. From this Termination Graph, the following applicative DP problem
is created:

P = { app#(app(app(appN, S), app(S, n)),m) →
app#(app(app(appN, S), n), app(S, m)) }

R = ∅

This DP problem cannot be handled by the A-Transformation, because of the
symbol S occuring both with arity 0 and with arity 1. Therefore, it is rather
hard to show finiteness of this DP problem.

However, if only the variables of the DP path are considered, then we have
a first-order DP problem:

P = { appN(S(n0),m) → appN(n0, S(m)) }
R = ∅

This is a finite DP problem, because in every chain the first argument de-
creases. This can also be shown with the Size-Change processor [TG05], for
example.

6.1. RENAMING NODES OF A TERMINATION GRAPH 49

6.1 Renaming nodes of a Termination Graph

The function bRTG (mnemonic: base-Rename) assigns every node of the Ter-
mination Graph TG a new term, using a new function name for every node,
except for Ins-nodes: Here, the newly assigned function name of the node the
instantiation edge points to is used. These new terms only consider those terms,
which are affected by substitutions on edges of the Termination Graph. The
idea behind this is, that the rules only demand these, i.e., they suffice to do
evaluation steps. This is illustrated in the following example.

Example 6.3 (Renaming nodes of the Termination Graph). For the start term
take u (from m), which was considered in example 3.1, the Termination Graph
shall be renamed.

Figure 6.3: Termination Graph for take u (from m) with renaming

The Termination Graph where the renamed terms are added is shown in
figure 6.3. Here, the fresh name “new_take” is assigned to node A. To build the
term, all variables of node A are collected and appended as arguments of this
fresh function. Therefore, the renamed term for this node is new_take u m.

At the Ins-node G, we have a call to node A again. Therefore, it is assigned
the same name “new_take”. As arguments of this term, we use the renamed
subterms that are present in node H and in node I. Constructors must not be
renamed, because these determine the path to take at Case-nodes. Therefore,
for node H the renamed term is the same as the node is labelled with. For node
I, we again assign a new name, in this case “new_p”, and collect all variables.
Then this term is inserted into the renamed term of node G. The new term
at node N is built in a similar fashion to that of node G. Again, the name of
the node the instantiation edge points to is used and the renamed subterms are

50 CHAPTER 6. RENAMING

inserted. As the only subterm is the variable u00 and variables are not renamed,
we have that the renamed term for node N is new_p u00.

How the terms are constructed formally is defined in the following. This
function will yield the results presented in the above example.

Definition 6.4 (bRTG). Let TG be a Termination Graph, let t be a node in
TG labelled with a term (f t1 . . . tn).

If {v1, . . . , vm} = VH(t) and {a1, . . . , ak} = VT(t), then

bRTG(t) =



t, if t is a leaf

ft v1 . . . vm a1 . . . ak, if t is an Eval-node, a VarExp-node, a
Case-node, or a TyCase-node

f bRTG(t1) . . .bRTG(tn), if t is a ParSplit-node

ft̃ bRTG(s1) . . .bRTG(sl) ρ1 . . . ρv, if t is an Ins-node
labelled with t̃[x1/s1 . . . xl/sl, b1/ρ1, . . . , bv/ρv],
an instantiation edge exists from t to t̃, and
bRTG(t̃) = ft̃ x1 . . . xl b1 . . . bv

Here, ft is a new function symbol that is assigned to the node t.

As seen in the definition of H-terminating terms, we need substitutions to ar-
gue about whether a term is H-terminating. Therefore, the presented renaming
must also be applied to substitutions.

Definition 6.5 (Renaming in substitutions). Let TG be a Termination Graph,
let σ be a substitution.

Then σrenT G
is defined as σrenT G

(x) = bRTG(σ(x)).

Substitutions may introduce new terms that do not correspond to any node
in the Termination Graph. Therefore, we have to leave these parts untouched,
while the part that corresponds to a node in the Termination Graph must be
renamed.

Definition 6.6 (Application of bRTG to general terms). If bRTG is applied
to a term s = (g s1 . . . su) that is an instance s′σ of a node labelled with s′ =
(g s′1 . . . s′u), then bRTG(s) = bRTG(s′)σrenT G

.
If bRTG is applied to a term t that is not an instance of a node in TG, then

bRTG(t) = t.

The function bRTG shall be applied when creating DP problems. The idea
is to use it prior to applying the substitutions collected on a DP or a rule-path.

Example 6.7 (Application of bRTG to create Dependency Pairs and rules).
We want to create DP problems from the renamed Termination Graph in exam-
ple 6.3.

For this purpose, the renamed terms from example 6.3 are being used. There-
fore, for the DP Path from node A to node G we have collected the substitution
[u/S(u0)] and hence get the Dependency Pair

new take(u, m) [u/S(u0)] → new take(p(u0), S(m))
=

new take(u0,m) → new take(p(u0, S(m))

6.1. RENAMING NODES OF A TERMINATION GRAPH 51

For the Rule Paths, the construction is similar. In the example, we have two
rule paths starting in node I and ending in node L and node M, respectively.
For the Rule Path to node M, we find the substitution [u0/Z] on the path, and
therefore get the rule

new p(u0) [u0/Z] → Z
=

new p(Z) → Z

For the other Rule Path ending in node L, we insert the renamed subterm
new p(u00) of node N as argument of the constructor S that occurs at node L.
Therefore, the renamed rule for this Rule Path is

new p(u0) [u0/S(u00)] → S(new p(u00))
=

new p(S(u00)) → S(new p(u00))

because we find the substitution [u0/S(u00)] on the path from node I to node L.

This construction of renamed Dependency Pairs and rules is performed by
the function renTG that is defined below.

Definition 6.8 (renTG). Let R be a set of rules generated from a Termination
Graph TG.

Then we define

renTG(R) = {bRTG(s)σ1 . . . σm → bRTG(ev(t)) | sσ1 . . . σm → ev(t) ∈ R}

Instead of using the function dpG′ for an SCC G′, now the function dpRenG′

is used, which renames the terms. It simply applies the function renTG to both
the Dependency Pairs and the rules.

Definition 6.9 (dpRen). Let TG be a Termination Graph containing an SCC
G′, and let dpG′ = (P, ∅,R, a).

Then dpRenG′ = (renTG(P), ∅, renTG(R), a).

Using this function to generate DP problems, we have the following renamed
DP problems for example 6.3.

Example 6.10 (Renamed DP problems). From the Termination Graph shown
in figure 6.3, the following renamed DP problems are created, where the Depen-
dency Pairs and rules are as presented in example 6.7:

P1 = { new take(S(u0),m) → new take(u0, S(m)) }
R1 = { new p(Z) → Z

new p(S(u00)) → S(new p(u00)) }

and

P2 = { new p(S(u00)) → new p(u00) }
R2 = ∅

52 CHAPTER 6. RENAMING

It should be noted that those parts of the renamed terms which are not
created from type information are always first order terms. For the types that
are appended to the terms we have that higher-order terms might exist, which
is the case for constructor classes. Thus, we employ a higher-order encoding for
the type information only, where we use an applicative notation using a binary
symbol app. Since type information is always an argument of a defined function,
the symbol app will be a constructor symbol, so it does not imply the problems
of the traditional approach [GTSK05a], where app is a defined symbol.

An example that shall illustrate why the type terms have to be represented
in a higher-order encoding is given below.

Example 6.11 (Encoding of type terms). Consider the following Haskell func-
tion

h :: Monad m => a -> (m b) -> Bool
h x mi = h mi mi

and the start term h x mi.
As can be seen, the type of the first argument of h is changing: On the left-

hand side the type of x is a, while on the right-hand side the term mi has the
type (m b). Here, the latter type is an application of an argument to a variable,
which is not allowed in first-order terms.

To represent this term, a higher-order encoding using a binary constructor
app is employed, as stated previously. Thus, the DP problem that is created
looks as follows:

P = { new h(x,mi, a,m, b) → new h(mi,mi, app(m, b),m, b) }
R = ∅

The approach which was described above might result in problems that
violate the variable condition, i.e., where there is a variable on a right-hand side
which does not occur on the left-hand side. This is corrected by filtering and
by replacing type variables.

Definition 6.12 (Correction of DP problems). Let (P, ∅,R, a) be a DP problem
that resulted from a Termination Graph.

Whenever there is a variable x ∈ VH(si) \ VH(l) for a Dependency Pair
l = F (t1, . . . , tn) → G(s1, . . . , sm) ∈ P, the tuple symbol G will be filtered, i.e.,
all terms G(u1, . . . , um) in P will be replaced by G(u1, . . . , ui−1, ui+1, . . . , um).
This replacement is repeated until there are no more free variables in all right-
hand sides of the Dependency Pairs.

Whenever there is a type variable a ∈ VT(r) \ VT(l) that occurs on a right-
hand side of a Dependency Pair l → r ∈ P or on the right-hand side of a
rule l → r ∈ R, the type variable a is replaced by the new type constructor
TyUnknown which has no data constructors.

For corrected DP problems, it holds that P and R are now first-order Term
Rewrite Systems, as introduced in section 2.2. This is, because by construc-
tion no left-hand side of a rule is a variable, and because of the correction, all
variables of the right-hand side are now contained in the left-hand side of the
rule.

As desired, the application of the correction does not change the termination
behavior, which will be shown next.

6.1. RENAMING NODES OF A TERMINATION GRAPH 53

Lemma 6.13 (Termination properties of corrected DP problems). A DP prob-
lem (P, ∅,R, a) that resulted from a Termination Graph is finite if the corrected
DP problem is finite.

Proof. This lemma is shown in two stages. First, it is shown that the repeated
filtering does not destroy chains, and therefore any infinite chain is preserved.
Second, it is shown that fixing a free type variable to a fresh type constructor
(which is unknown in the program), the evaluation of such a term cannot be
changed.

Let (P, ∅,R, a) be a DP problem that resulted from a Termination Graph
and let s1 → t1, s2 → t2, . . . be a (possibly infinite) chain of Dependency Pairs
in P, which implies that ti →∗

R si+1 for every i ∈ N. Assume that tk has the
form G(tk,1, . . . , tk,m), where the j-th argument is filtered away in the corrected
term. Let sk+1 = G(sk+1,1, . . . , sk+1,m). Then tk →∗

R sk+1, and since there
are no rules for the tuple symbol G in R, it must hold that tk,l →∗

R sk+1,l for
every 1 ≤ l ≤ m. Therefore, also for the filtered terms that do not contain the
j-th argument anymore, it holds that G(tk,1, . . . , tk,j−1, tk,j+1, . . . , tk,m) →∗

R
G(sk+1,1, . . . , sk+1,j−1, sk+1,j+1, . . . , sk+1,m). Hence, every chain in the original
DP problem remains a chain in the filtered DP problem, proving the first part.

Assume there is a free type variable a on a right-hand side. Since this type
variable must then also been introduced on a right-hand side of a Haskell rule,
there cannot be any class constraints for this type variable. This is due to the
requirement that any class constraint only refers to variables that are in the
type signature [Jon03]. Therefore, no constructors can influence the evaluation,
since there are no constructors for a variable type, and no class constraint can
influence the choice of rules for the function that is to be evaluated. Therefore,
one can safely replace the type variable by an unknown type TyUnknown which
has no constructors.

The correction of rules shall be illustrated using two examples. First, we
present an example for the filtering of free variables on right-hand sides of De-
pendency Pairs.

Example 6.14 (Filtering). The start term foldl g z xs shall be analyzed.
Here is the definition of the function foldl, as given in the Prelude:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

From the Termination Graph for the given start term, the following renamed
Dependency Pair is created:

new foldl(g, z, x : xs) → new foldl(g, v, xs)

In this Dependency Pair, the fresh variable v is introduced by ev on the right-
hand side. This variable must be filtered. For this purpose, the second argument
of the function new foldl is dropped. Thus, the filtered Dependency Pair looks
as follows:

new foldl(g, x : xs) → new foldl(g, xs)

This is now a standard rule that can be processed further.

54 CHAPTER 6. RENAMING

The second example for the correction of rules illustrates the second step
in the correction, namely the replacement of free type variables. These might
occur, when a term is used on a right-hand side of a Haskell rule that has a free
type variable.

Example 6.15 (Replacement of unbound type variables). The following Haskell
function always returns the Int number 0, but does so in a rather complicated
way:

zeroComplicated = length []

In order to return 0, the function zeroComplicated calls the function length
with the empty list as argument. The empty list [] has the type [a], where the
type variable a is fresh on the right-hand side, i.e., there is no other term that
has the type a.

So if rules have to be created for the function zeroComplicated, the follow-
ing rule is created1:

new zeroComplicated → new length([], a)

Here, it can be observed that the type variable a occurs free on the right-hand
side of a rule. But this variable does not influence the evaluation of the term
length []. Thus, it could as well be replaced by an unknown type constructor
which shall be called TyUnknown. This is, because the rules corresponding to the
function length expect a second argument. So the corrected rule will look as
follows:

new zeroComplicated → new length([],TyUnknown)

This is now a valid first-order rule.

The following section will show that whenever a term is not H-terminating,
then there exists an infinite chain for some renamed DP problem, i.e., then a
DP problem exists that is not finite.

6.2 Correctness of Renaming

This section shows that when applying the previously presented renaming with
a following correction of terms, then we can still deduce the start term to be
H-terminating, if we could prove finiteness of all resulting DP problems.

Theorem 6.16 (renTG preserves soundness). Let TG be a Termination Graph.
If the DP problem dpRenG′ is finite for all SCCs G′ of TG, then all nodes

t in TG are H-terminating.

To show theorem 6.16, we will show that a non-H-terminating term implies
an infinite chain in a created DP problem. In order to prove this property,
the proofs of [GSSKT06] are modified to include type classes and renaming.
Furthermore, we modified the definition of the function ev, where we introduced
fresh variables already in the terms read from Ins-nodes. This is also considered
in the following proofs.

1In order to achieve this, one must circumvent the function ev, so that the result of length
is not directly inserted. This can be done by inserting an instantiation edge from length []

to the general function call length xs.

6.2. CORRECTNESS OF RENAMING 55

We will show theorem 6.16 in four stages. First, a few helper lemmas are
introduced. In the second stage, it is shown that every evaluation of subterms
can also be done with the renamed rules. Then, the third step shows that an
infinite reduction always traverses an Ins-node, for which an infinite reduction
exists, as well. Here, the reduction must also consider the extension by arbitrary
H-terminating terms, as it is required for H-termination. In the fourth and last
step, the theorem will be proven, by giving an infinite chain for such an infinite
evaluation.

First, we define a relation that allows rewriting also below or besides the
Haskell redex. This will be used in the lemmas in order to reason about reduc-
tions, where a corresponding Haskell reduction could be extended in order to
reach such a term. This definition is taken directly from [GSSKT06].

Definition 6.17 (⇒H, [GSSKT06]). For two terms s and t we define s ⇒H t,
iff s rewrites to t on a position π that is not strictly above e(s), using the first
equation in the Haskell program that matches s|π.

The relation⇒H models the application of the function ev, where evaluations
may occur on positions that are not on the evaluation position. This was already
shown in Lemma 14 of [GSSKT06], however, it has to be modified and shown
again due to the changes made to ev.

Lemma 6.18 (Modelling ev with ⇒H). Let TG be a Termination Graph and
let σ be a substitution.

If sσ ⇒∗
H xσ holds for all fresh variables x that are introduced by ev at

ParSplit- and Ins-nodes for a term s, then tσ ⇒∗
H ev(t)σ holds for all nodes

t of TG.

Proof. This lemma is shown inductively, using the edge relation of TG after
removing all instantiation edges. This is a well-founded relation, since after
removing the instantiation edges the graph becomes acyclic.

We only have to consider the cases where ev(t) 6= t and t 6∈ UTG.
If t is an Eval -node with child node t̃, then tσ →H t̃σ. Thus, tσ ⇒∗

H t̃σ.
The induction hypothesis is applicable to t̃, since it is the child of t. It gives us
t̃σ ⇒∗

H ev(t̃)σ. Since ev(t) = ev(t̃), we have tσ ⇒H t̃σ ⇒∗
H ev(t̃)σ = ev(t)σ.

In the last case to consider we have t = t̃[x1/t1, . . . , xn/tn, y1/s1, . . . , ym/sm]
and either t is a ParSplit-node starting with a constructor, or t is an Ins-node
with an instantiation edge to a node t̃. We assume that t1, . . . , tn 6∈ PUTG and
s1, . . . , sm ∈ PUTG. For every 1 ≤ i ≤ m, the term si is replaced by a fresh
variable zi in the term ev(t). For these, we have by assumption that siσ ⇒∗

H ziσ.
The induction hypothesis can be applied to the children ti, since these are

not connected via an instantiation edge. Thereby, we get:

tσ = t̃[x1/t1, . . . , xn/tn, y1/s1, . . . , ym/sm]σ
= t̃σ[x1/t1σ, . . . , xn/tnσ, y1/s1σ, . . . , ym/smσ]
⇒∗

H t̃σ[x1/ev(t1)σ, . . . , xn/ev(tn)σ, y1/z1σ, . . . , ym/zmσ]
= t̃[x1/ev(t1), . . . , xn/ev(tn), y1/z1, . . . , ym/zm]σ
= ev(t)σ

56 CHAPTER 6. RENAMING

Next, we want to show a version of lemma 18 of [GSSKT06], where renaming
and the TyCase-expansion have been introduced. Since there, the notions of
necessary reductions and substitutions that are evaluated enough are used, their
definitions will be introduced first.

The idea behind necessary reductions is, that some context forces a term to
be evaluated to a certain constructor depth. This can already be observed in the
definition of the evaluation position, which moves from the top further inwards
if a pattern requires a constructor. Such reductions shall be called necessary.

Definition 6.19 (Necessary Reduction, [GSSKT06]). We say that t →∗
H q is a

necessary reduction, iff either t = q, or both q = (c q1 . . . qn) for a constructor
c of arity n and

• t = (c t1 . . . tn) and all reductions ti →∗
H qi are necessary, or

• t = (f t1 . . . tm) →+
H (c s1 . . . sn) and all reductions si →∗

H qi are necessary.

It should be noted that if t →∗
H q is a necessary reduction and t 6= q, then t

has a non-functional type, because it can be reduced to a term (c s1 . . . sn) for
a constructor c of arity n.

Since we do not want substitutions to have an effect on the evaluation posi-
tion, the notion of evaluated enough substitutions is used. A substitution that is
evaluated enough for a reduction must provide a constructor when it is needed.
Then, the evaluation position will not be changed.

In order to identify the constructors in a term only, the function drop is
used that replaces all non-functional terms by a variable, except for those that
already start with a constructor.

Definition 6.20 (drop, undrop, [GSSKT06]). The function drop is a mapping
from Haskell terms to new Haskell terms. It is defined as:

• drop(t) = t, if t has a functional type,

• drop(c t1 . . . tn) = c drop(t1) . . .drop(tn), if c is a constructor of arity n,
and

• drop(t) = xt for a fresh variable xt, otherwise.

The function undrop is defined as the inverse function of drop, i.e., undrop
is defined as the substitution replacing every xt by t.

For a substitution σ, we define σdrop as the substitution, for which σdrop(x) =
drop(σ(x)) for all variables x. Please note, that here we allow an infinite domain
of σdrop.

Using these terms, where constructors and functional terms have been kept,
we can now define the requirements imposed onto a substitution that allows for
evaluation without having to evaluate a subterm in the domain of the substitu-
tion.

Definition 6.21 (Evaluated Enough, [GSSKT06]). For a (possibly infinite)
reduction tσ →H t1 →H t2 →H . . ., we say that a substitution σ is evaluated
enough, iff tσdrop →H s1 →H s2 →H . . . and ti = undrop(si) for all i.

Finally, an altered version of Lemma 18 from [GSSKT06] can be proven,
where renaming and the TyCase-expansion have been included.

6.2. CORRECTNESS OF RENAMING 57

Lemma 6.22 (Properties of ev, con, and rl when renaming is used). Let TG be
a Termination Graph and let t be a node in TG, where t 6∈ PUTG. Let tσ →∗

H q
be a necessary reduction where σ is evaluated enough. Then it holds that

(a) bRTG(ev(t))σrenT G
→∗S

s∈con(t) renT G(rl(s)) bRTG(q′) for some term q′ with

q ⇒∗
H q′

(b) If t is a Case-, an Eval-, or a TyCase-node and if tσ 6= q, then there is
a rule path from t to some term t̂ which is labelled with σ1, . . . , σm such
that

• σ = σ1 . . . σmτ ,
• σrenT G

= σ1 . . . σmτrenT G
, and

• bRTG(ev(t̂))τrenT G
→∗S

s∈con(t̂) renT G(rl(s)) bRTG(q′)

for some substitution τ and some term q′ with q ⇒∗
H q′.

Proof. The lemma is proven by induction. As induction relation the lexico-
graphic combination of the reduction length of tσ →∗

H q and the edge relation
in TG after removing all outgoing edges of Eval -nodes is used. This relation
is well-founded, since all paths starting in a node that has an incoming instan-
tiation edge either traverse an Eval -node or a leaf with an error term after
traversing only Case- or TyCase-nodes. Therefore, the resulting relation is
acyclic.

If tσ = q, then we can choose q′ = ev(t)σ and obtain from lemma 6.18 that
q = tσ ⇒∗

H ev(t)σ = q′. Thus, by definition 6.6, the following holds:

bRTG(ev(t))σrenT G
= bRTG(ev(t)σ) →0S

s∈con(t) renT G(rl(s)) bRTG(q′)

This shows (a) for the case where tσ = q. For (b) nothing has to be shown,
since it is only of relevance when tσ 6= q.

In the remainder it will be assumed that tσ 6= q. As the reduction tσ →∗
H q

is necessary, it holds that the head of q is a constructor.
Case Analysis is performed according to the expansion rule applied to gen-

erate t’s children. It should be noted that for every child t̃ of t, t̃ 6∈ PUTG. If
this was not the case, then also t ∈ PUTG would hold, which was ruled out by
assumption.

Leaf
If t is a leaf, then t is either an error term, a constructor, or a variable x. Neither
an error term nor a constructor can be reduced with →H, therefore it holds that
tσ = q which contradicts the assumption.

In the case of a variable x it still holds that tσ = σ(x) = q. Because σ is
evaluated enough, drop(tσ) = drop(xσ) = xσdrop = tσdrop →∗

H q′ for some term
q′ with undrop(q′) = q. In order to show that tσ = q, a more general claim
is proven: if for arbitrary terms s, p, and p′, s →∗

H p is a necessary reduction
and drop(s) →∗

H p′ with undrop(p′) = p, then s = p. From this result tσ = q
follows by setting s = tσ, p = q, and p′ = q′. We show the claim by structural
induction on s:

• If s has functional type, then s = p follows from the definition of necessary
reductions.

58 CHAPTER 6. RENAMING

• If s = (c s1 . . . sn) for some constructor c of arity n, then p = (c p1 . . . pn)
where si →∗

H pi are necessary reductions for all 1 ≤ i ≤ n. From the defini-
tion of drop follows drop(s) = (c drop(s1) . . .drop(sn)) →∗

H (c p′1 . . . p′n) =
p′, and the definition of undrop gives us p = (c p1 . . . pn) = undrop(p′) =
(c undrop(p′1) . . .undrop(p′n)) for some terms p′i. Therefore drop(si) →∗

H p′i
and undrop(p′i) = pi hold, making the induction hypothesis applicable for
every pair si, pi. This yields si = pi and hence s = p.

• In all other cases drop(s) = xs. Since drop(s) →∗
H p′, it must hold that

p′ = xs. Therefore p = undrop(p′) = undrop(xs) = s.

Eval
If t is an Eval -node with child t̃, then ev(t) = ev(t̃), con(t) = con(t̃), and
t →H t̃.

Since every evaluation of tσ starts with this evaluation step, the reduction
looks as follows: tσ →H t̃σ →∗

H q. The reduction t̃σ →∗
H q is shorter than

the reduction tσ →∗
H q. Because of this reduction being necessary, t̃σ →∗

H q is
necessary, too. Furthermore, since σ is evaluated enough, tσdrop →H t̃σdrop, and
hence σ is evaluated enough in t̃σ →∗

H q as well. Thus the induction hypotheses
for (a) and (b) can be used.

From the induction hypothesis for (a) follows

bRTG(ev(t̃))σrenT G
→∗S

s∈con(t̃) renT G(rl(s)) bRTG(q′)

for some term q′ with q ⇒∗
H q′. Since ev(t) = ev(t̃) and con(t) = con(t̃), (a)

has been shown.
To show (b) we distinguish two cases: In case t̃ is neither a Case-, nor a

TyCase-, nor an Eval -node, then the path from t to t̃ is a rule path and (b)
follows directly from the induction hypothesis for (a).

In the other case, i.e., when t̃ is a Case-, a TyCase-, or an Eval -node,
then the head of t̃ must be defined. As the head of q is a constructor, we have
t̃σ 6= q. From the induction hypothesis for (b) it is known that a rule path from
t̃ to some t̂ exists, which satisfies the conditions in (b). This rule path remains
a rule path when prepending the edge from t to t̃ to it, thus (b) is proven.

Case
If t is a Case-node, then ev(t) = t, con(t) = {t}, and t|e(t) = x for some
variable x. Because of σ being evaluated enough, σ(x) must be of the form
(c t1 . . . tn) for some constructor c of arity n.

One of the children of t is the node tδ where δ = [x/(c x1 . . . xn)] with fresh
variables x1, . . . , xn. Let σ′ be like σ, but on x1, . . . , xn we define σ′(xi) = ti
for 1 ≤ i ≤ n. Then σ = δσ′ and thus tσ = tδσ′ →∗

H q is a necessary reduction.
We obtain tδσ′drop = tδσdrop[x1/drop(t1), . . . , xn/drop(tn)] = tσdrop. From this
and the precondition that σ was evaluated enough in the reduction tσ →∗

H q, it
follows that σ′ is evaluated enough in the reduction tδσ′ →∗

H q.
If the node tδ is neither a Case-, a TyCase-, nor an Eval -node, the path

from t to tδ is a rule path. Then (b) directly follows from the induction hypoth-
esis for (a).

Otherwise tδ is a Case-, a TyCase-, or an Eval -node. Because the node tδ
is a child of t and the reduction tδσ′ →∗

H q has the same length as tσ →∗
H q, the

6.2. CORRECTNESS OF RENAMING 59

induction hypothesis for (b) implies the existence of a rule path from tδ to some
t̂ labelled with substitutions σ1, . . . , σm such that σ′ = σ1 . . . σmτ , σ′renT G

=
σ1 . . . σmτrenT G

, and bRTG(ev(t̂))τrenT G
→∗S

s∈con(t̂) renT G(rl(s)) bRTG(q′) for some

substitution τ and some term q′ with q ⇒∗
H q′. This rule path remains a

rule path when prepended with the edge from t to tδ. This new rule path
is labelled with δ, σ1, . . . , σm such that σ = δσ′ = δσ1 . . . σmτ and σrenT G

=
δrenT G

σ1 . . . σmτrenT G
= δσ1 . . . σmτrenT G

which proves (b).
Now the rule bRTG(t)δσ1 . . . σm → bRTG(ev(t̂)) is contained in renTG(rl(t))

and it holds that rl(s) ⊆ rl(t) for all s ∈ con(t̂). This enables us to prove (a):

bRTG(ev(t))σrenT G
= bRTG(t)σrenT G

= bRTG(t)δσ1 . . . σmτrenT G

→renT G(rl(t)) bRTG(ev(t̂))τrenT G

→∗
renT G(rl(t)) bRTG(q′)

TyCase
If cs⇒t is a TyCase-node, then ev(t) = t and con(t) = {t}. Moreover, t|e(t)

is a term (g s1 . . . sk) of type ρ′[a] for a defined function symbol g and terms
s1 . . . sk. Since tσ 6= q, there must be an instance (C ρ[b1/ρ1, . . . , bn/ρn]) of a
class (C a) whose definition of g is used in the necessary reduction tσ →∗

H q.
One of the children of t is reduce(cs[a/ρ])⇒t, where ρ = (T b1 . . . bn) for some

type constructor T of arity n. Let δ = [a/ρ] and let σ′ be like σ, but on
the fresh variables b1, . . . , bn we define σ′(bi) = ρi for 1 ≤ i ≤ n, yielding
σ = δσ′. Since tσ →∗

H q is a necessary reduction, the reduction tδσ′ →∗
H q is

also necessary. Also σ′ is evaluated enough in the reduction tδσ′ →∗
H q, as σ is

evaluated enough in the reduction of tσ →∗
H q: For the type variable a, it holds

that σ(a) = ρ[b1/ρ1, . . . , bn/ρn], thus drop(σ(a)) = T drop(ρ1) . . . drop(ρn) =
T drop(σ′(b1)) . . . drop(σ′(bn)) = drop(σ′(ρ)).

If reduce(cs[a/ρ])⇒t is neither a Case-, nor a TyCase-, nor an Eval -node, the
induction hypothesis for (a) directly proves (b). This holds because the path
from cs⇒t to reduce(cs[a/ρ])⇒t is a rule path, the reduction has the same length,
and reduce(cs[a/ρ])⇒t is a child of cs⇒t.

Otherwise, reduce(cs[a/ρ])⇒t is a Case-, a TyCase-, or an Eval -node. Since
reduce(cs[a/ρ])⇒t is a child of (t, cs) and since the reduction has the same length,
the induction hypothesis for (b) implies the existence of a rule path from
reduce(cs[a/ρ])⇒t to some term t̂ which is labelled with substitutions σ1, . . . , σm,
such that σ′ = σ1 . . . σmτ , σ′renT G

= σ1 . . . σmτrenT G
and we have a reduc-

tion bRTG(ev(t̂))τrenT G
→∗S

s∈con(t̂) renT G(rl(s)) bRTG(q′) for some term q′ with

q ⇒∗
H q′. This rule path can be extended by prepending cs⇒t, proving (b).
Thus, the rule bRTG(t)δσ1 . . . σm → bRTG(ev(t̂)) is contained in the rules

renTG(rl(t)). Furthermore, for all s ∈ con(t̂) it holds that renTG(rl(s)) ⊆
renTG(rl(t)). Hence, (a) can now be proven:

bRTG(ev(t))σrenT G
= bRTG(t)σrenT G

= bRTG(t)δσ′renT G

= bRTG(t)δσ1 . . . σmτrenT G

→renT G(rl(t)) bRTG(ev(t̂))τrenT G

→∗
renT G(rl(t)) bRTG(q′)

60 CHAPTER 6. RENAMING

VarExp
If t is a VarExp-node then tσ has a functional type. Therefore tσ = q which
contradicts the assumption.

ParSplit, where head(t) is a constructor
This implies t = (c t1 . . . tn) and q = (c q1 . . . qn) with tiσ →∗

H qi for all i.
Because of tσ 6= q and the fact that the original reduction is necessary, the arity
of c must be n. Therefore, all reductions tiσ →∗

H qi are necessary. Moreover,
tσdrop = (c t1σdrop . . . tnσdrop) →∗

H (c p1 . . . pn) where undrop(pi) = qi for all i.
Thus, σ is evaluated enough in every reduction tiσ →∗

H qi as tiσdrop →∗
H pi.

It holds that ev(t) = (c ev(t1) . . . ev(tn)) and con(t) = con(t1) ∪ . . . ∪
con(tn). The reductions tiσ →∗

H qi have at most the same length as the re-
duction tσ →∗

H q and since the ti are children of t, the induction hypothesis
implies

bRTG(ev(ti))σrenT G
→∗S

s∈con(ti)
renT G(rl(s)) bRTG(q′i)

for terms q′i with qi ⇒∗
H q′i for all i. Defining q′ = (c q′1 . . . q′n) enables us to show

(a):

bRTG(ev(t))σrenT G
= bRTG(c ev(t1) . . . ev(tn))σrenT G

= (c bRTG(ev(t1)) . . .bRTG(ev(tn)))σrenT G

= c bRTG(ev(t1))σrenT G
. . .bRTG(ev(tn))σrenT G

→∗S
s∈con(t) renT G(rl(s)) c bRTG(q′1) . . .bRTG(q′n)

= bRTG(q′)

It holds that q ⇒∗
H q′, since q = (c q1 . . . qn) and qi ⇒∗

H q′i for all i.

ParSplit, where head(t) is a variable
In this case, it holds that t ∈ PUTG, which contradicts the assumption.

Ins
Since t is an Ins-node, t = t̃[x1/t1, . . . , xn/tn, b1/ρ1, . . . bv/ρv]. If t̃ = (x y)
then ev(t) is a fresh variable and therefore the above case applies. Otherwise,
t̃ is an Eval - or Case-node. Without loss of generality it is assumed that
x1, . . . , xn, b1, . . . , bv are fresh variables that neither occur in t nor in the domain
of σ. Then tσ = t̃σ[x1/t1σ, . . . , xn/tnσ, b1/ρ1σ, . . . , bv/ρvσ] →∗

H q. It should be
noted that for every subterm ti, ti 6∈ PUTG holds. This is, because if some
ti ∈ PUTG, then also t ∈ PUTG would hold, which is ruled out by assumption.

Instead of the above reduction, we start with first evaluating the subterms
tiσ “as much as ever needed in the reduction tσ →∗

H q”. This way, each
tiσ is evaluated to a term si. For a precise definition of si consider the re-
duction t̃σ[x1/t1σ, . . . , xn/tnσ, b1/ρ1σ, . . . , bv/ρvσ] →∗

H q. Initially, we choose
si = tiσ. If the above reduction is still possible for the term, where the
subterms have been reduced to the constructors occuring in them, i.e., for
the term t̃σ[x1/drop(s1), . . . , xn/drop(sn), b1/ρ1σ, . . . , bv/ρvσ] (yielding a term
p with undrop(p) = q), then we have found our final term si. In this case
the substitution σ[x1/s1, . . . , xn/sn, b1/ρ1σ, . . . , bv/ρvσ] is evaluated enough in
this reduction. Otherwise, there must be some point in the evaluation of the
term t̃σ[x1/drop(s1), . . . , xn/drop(sn), b1/ρ1σ, . . . , bv/ρvσ] where it gets stuck,

6.2. CORRECTNESS OF RENAMING 61

because a variable xr has to be evaluated that was introduced by applying drop
on some si. Then si is replaced by evaluating it further; more precisely a con-
structor c is required for the evaluation to continue. As the original reduction
was able to continue, r must be reducible to a term of the form (c l1 . . . lk).
Therefore, by replacing the subterm r of si by (c l1 . . . lk), the evaluation can
continue beyond the point where it got stuck before. The reason is, that for the
old definition of si we got drop(si) = C[drop(r)] = C[xr], but for the new def-
inition of si we have drop(si) = C[drop(c l1 . . . lk)] = C[c drop(l1) . . .drop(lk)],
i.e., the required constructor c now is present. In this way, the si are redefined
until all necessary constructors are present. By construction, the reductions
tiσ →∗

H si are necessary. Furthermore, as σ was evaluated enough in the re-
duction tσ →∗

H q and as this reduction includes all reductions tiσ →∗
H si, the

substitution σ is evaluated enough in the reductions tiσ →∗
H si, too.

The length of a reduction tiσ →∗
H si is at most the same as the length of

the reduction tσ →∗
H q, for all 1 ≤ i ≤ n. Thus the induction hypothesis can

be applied, since all ti are children of t. This way also the necessary reduction
t̃σ[x1/s1, . . . , xn/sn, b1/ρ1σ, . . . , bv/ρvσ] →∗

H q̃ for a term q̃ with q ⇒∗
H q̃ is

obtained, which has at most the same length as the original reduction tσ →∗
H q.

The substitution σ[x1/s1, . . . , xn/sn, b1/ρ1σ, . . . , bv/ρvσ] is evaluated enough by
construction.

For every reduction tiσ →∗
H si the induction hypothesis for (a) implies:

(∗) bRTG(ev(ti))σrenT G
→∗S

s∈con(ti)
renT G(rl(s)) bRTG(s′i)

for some terms s′i with si ⇒∗
H s′i. Moreover, when reducing the terms si to

the terms s′i, the above properties are not destroyed, i.e., for the substitution
σ′ = σ[x1/s′1, . . . , xn/s′n, b1/ρ1σ, . . . , bv/ρvσ] we still have t̃σ′ →∗

H q′′ for a term
q′′ with q ⇒∗

H q′′. Again the reduction t̃σ′ →∗
H q′′ is necessary, it has at most

the same length as the original reduction tσ →∗
H q, and the substitution σ′ is

evaluated enough.

The reduction t̃σ′ →∗
H q′′ has a length greater than zero, since head(q) =

head(q′′) is a constructor and head(t̃) is defined. As t̃ is an Eval - or a Case-
node, the induction hypothesis (b) can be used for the child t̃ of t. We obtain a
node t̂ and a rule path from t̃ to t̂ labelled with substitutions σ′1, . . . , σ

′
m where

σ′ = σ′1 . . . σ′mτ , σ′renT G
= σ′1 . . . σ′mτrenT G

, and

(∗∗) bRTG(ev(t̂))τrenT G
→∗S

s∈con(t̂) renT G(rl(s)) bRTG(q′)

for some term q′ with q′′ ⇒∗
H q′.

Because of the rule path, the rule bRTG(t̃)σ′1 . . . σ′m → bRTG(ev(t̂)) is in-
cluded in rl(t̃). As rl(s) ⊆ rl(t̃) for all s ∈ con(t̃), the statement (a) can now

62 CHAPTER 6. RENAMING

be proven:

bRTG(ev(t))σrenT G

= bRTG(t̃[x1/ev(t1), . . . , xn/ev(tn)])σrenT G

= ft̃ (bRTG(ev(t1))σrenT G
) . . . (bRTG(ev(tn))σrenT G

)
ρ1σrenT G

. . . ρvσrenT G

→∗S
s∈con(t1)∪...∪con(tn) renT G(rl(s)) ft̃ bRTG(s′1) . . .bRTG(s′n) by (*)

ρ1σrenT G
. . . ρvσrenT G

= (ft̃ x1 . . . xn b1 . . . bv)σ′renT G

= bRTG(t̃)σ′renT G

= bRTG(t̃)σ′1 . . . σ′mτrenT G

→renT G(rl(t̃)) bRTG(ev(t̂))τrenT G

→∗
renT G(rl(t̃))

bRTG(q′) by (**)

As desired, we have q ⇒∗
H q′′ ⇒∗

H q′.

Since H-termination allows for the addition of H-terminating terms to terms
with functional types, showing the absence of infinite →H evaluations does not
show H-termination. Thus, we first introduce a different relation which is al-
lowed to append arbitrary terms and can strip off constructors.

Definition 6.23 (↪→H, [GSSKT06]). We define s ↪→H t, iff

(a) s →H t,

(b) s = (f s1 . . . sm) for a defined function symbol f of arity n, where m < n
and t = (f s1 . . . sm t′) for an H-terminating term t′, or

(c) s = (c s1 . . . sn) for a constructor c and t = si for some 1 ≤ i ≤ n.

Corollary 6.24 (Properties of ↪→H, [GSSKT06]). For the relation ↪→H, the
following two properties hold:

(1) A ground term is not H-terminating iff it starts an infinite ↪→H-reduction.

(2) If a non-ground term t is H-terminating, then t is terminating w.r.t. ↪→H.

The properties of the above corollary should be easy to see from defini-
tion 2.7. However, it should be noted that the other direction of property (2)
does not hold, i.e., a non-ground term can be terminating w.r.t. ↪→H, but not
H-terminating. This is shown in the following example:

Example 6.25 (Termination w.r.t. ↪→H does not imply H-termination). Con-
sider the following Haskell program, which was already presented in [GSSKT06],
and the start term nonterm False x.

nonterm True x = True
nonterm False x = nonterm (x True) x

It can be seen that the start term is terminating w.r.t. ↪→H, since after the
evaluation to nonterm (x True) x, no further reduction is possible. However,
if one instantiates the start term with the substitution σ = [x/not], then an
infinite evaluation exists:

6.2. CORRECTNESS OF RENAMING 63

(nonterm False x)σ = nonterm False not
→H nonterm (not True) not
→H nonterm False not
→H . . .

After having introduced the relation ↪→H, we can now prove a version of
lemma 20 from [GSSKT06] where renaming and type classes are introduced.

Lemma 6.26 (Properties of dp when renaming is used). Let TG be a Termina-
tion Graph and let s be a node in TG. Let σ be a substitution such that sσ starts
an infinite ↪→H-reduction, where σ is evaluated enough in this ↪→H-reduction and
where σ(x) is terminating w.r.t. ↪→H for all variables x.

Then there is a path (possibly of length zero) from s to an Ins-node t =
t̃[x1/t1, . . . , xn/tn, b1/ρ1, . . . , bv/ρv] labelled with σ1, . . . , σm and an instantia-
tion edge from t to a node t̃ such that

• σ = σ1 . . . σmτ for some substitution τ , such that tτ is not ↪→H-terminating

• σrenT G
= σ1 . . . σmτrenT G

• bRTG(ev(t))τrenT G

>ε−−→
∗
RrenT G

bRTG(t̃)µrenT G
for the set of rules RrenT G

=⋃
s∈con(t1)∪...∪con(tn) renTG(rl(s)) such that t̃µ starts an infinite ↪→H-reduc-

tion, µ is a substitution which is evaluated enough in this ↪→H-reduction,
and all µ(x) are terminating w.r.t. ↪→H.

Proof. The lemma is proven by induction on the edge relation in the graph
obtained from TG by removing all instantiation edges. This means that one
can assume the lemma to hold for all children of a term s, except for those that
are reachable only via instantiation edges. Case analysis is performed according
to the expansion rule applied to s.

Leaf
If s is a leaf, then either s is an error term, a constructor, or a variable x. In
either of the first two cases, sσ is a normal form w.r.t. ↪→H. In the last case, the
term sσ = σ(x) is terminating w.r.t. ↪→H by the requirements on σ. Therefore
sσ cannot start an infinite ↪→H-reduction, which contradicts the assumption.

Eval
If s is an Eval -node with child s̃, then s →H s̃ and therefore the infinite ↪→H-
reduction has to start with sσ ↪→H s̃σ. Therefore, s̃σ is also not terminating
w.r.t. ↪→H and σ is evaluated enough in this infinite ↪→H-reduction. Since s̃ is
a child of s, the induction hypothesis implies the lemma.

Case
If s is a Case-node, then s|e(s) is a variable x. As σ is evaluated enough and
as an infinite ↪→H-reduction exists, σ(x) must be of the form (c s1 . . . sn) for a
constructor c of arity n.

One of the children of s is sδ with δ = [x/(c x1 . . . xn)] for fresh variables
x1, . . . , xn. Let σ′ be like σ, but let σ′(xi) = si for all i. Then σ = δσ′,
which implies that sσ = sδσ′ also starts an infinite ↪→H-reduction. The same

64 CHAPTER 6. RENAMING

argument as in the case of Case-nodes in the proof of Lemma 6.22 shows that
σ′ is evaluated enough in the infinite ↪→H-reduction of sδσ′.

Because of sδ being a child of s and because σrenT G
= δrenT G

σ′renT G
=

δσ′renT G
, the lemma holds via the induction hypothesis.

TyCase
If cs⇒s is a TyCase-node, then s|e(s) is a term (g s1 . . . sm) of type ρ′[a]. Since
we have an infinite ↪→H-reduction, an instance (C ρ[b1/ρ1, . . . , bn/ρn]) of a class
(C a) introduced by σ exists, which defines the rules of g.

One of the children of cs⇒s is reduce(cs[a/ρ])⇒s, where the type variables
b1, . . . , bn are fresh. Let σ′ be like σ, but let σ′(bi) = ρi for 1 ≤ i ≤ n. Then
σ = δσ′ for δ = [a/ρ], and therefore sσ = sδσ′ starts an infinite ↪→H-reduction.
The same argument as in the proof of Lemma 6.22 shows that σ′ is evaluated
enough in the infinite ↪→H-reduction of sδσ′.

Since reduce(cs[a/ρ])⇒s is a child of cs⇒s, the lemma follows from the induction
hypothesis.

VarExp
If s is a VarExp-node, then the infinite ↪→H-reduction starts with sσ ↪→H

sσ s′ for some H-terminating term s′. Because an H-terminating term is also
terminating w.r.t. ↪→H, s′ cannot start an infinite ↪→H-reduction. It is therefore
safe to assume that s′ is evaluated “as much as ever needed” in the infinite
reduction of sσ s′, cf. the proof of lemma 6.22 in the case of Ins-nodes. (one
could also replace s′ by its normal form w.r.t. →H)

Let (s x) be the child of s. By extending σ to have σ(x) = s′, (s x)σ
starts an infinite ↪→H-reduction. By construction, σ remains evaluated enough
in the infinite reduction of (s x)σ and instantiates all variables with terms that
terminate w.r.t. ↪→H. Thus, the lemma follows from the induction hypothesis,
since (s x) is the child of s.

ParSplit
In this case it holds that s = (c s1 . . . sn) for a constructor c or s = (x s1 . . . sn)
for a variable x. Since sσ is not terminating w.r.t. ↪→H, there must be a si such
that siσ is not terminating either. Since si is a child of s, the lemma follows
from the induction hypothesis.

Ins
Now s = s̃[x1/s1, . . . , xn/sn, b1/ρ1, . . . , bv/ρv] and the children of s are s1, . . . , sn

and s̃.
First, the case is regarded where a si exists such that siσ starts an infinite

↪→H-reduction. In this case the induction hypothesis may be applied and the
lemma follows from it. It should be noted that if s̃ = (x y), then this case
always applies. The reason is the same as in the ParSplit-case where the head
is a variable: If both s1σ and s2σ terminate w.r.t. ↪→H, then this is also the
case for (s1σ s2σ) = sσ.

Thus, in the following it is assumed that all si terminate w.r.t. ↪→H and
s 6= (x y). Without loss of generality, we assume that m ≤ n exists, such that
for all 1 ≤ i ≤ m, we have si 6∈ PUTG, and for m < j ≤ n we have sj ∈
PUTG. Then, ev(s) = s̃[x1/ev(s1), . . . , xm/ev(sm), xm+1/ym+1, . . . , xn/yn],
where ym+1, . . . , yn are fresh variables. Let t = s, tk = sk for 1 ≤ k ≤ n, t̃ = s̃,

6.2. CORRECTNESS OF RENAMING 65

and τ = σ. Without loss of generality it is assumed that x1, . . . , xn, b1, . . . , bv

are fresh variables not occuring in t or in the domain of τ = σ. Then sσ =
tτ = t̃τ [x1/t1τ, . . . , xn/tnτ, b1/ρ1τ, . . . , bv/ρvτ] starts an infinite ↪→H-reduction.
Furthermore, we still have an infinite ↪→H-reduction for any term that results
from t̃τ [x1/t1τ, . . . , xn/tnτ, b1/ρ1τ, . . . , bv/ρvτ] by first reducting tiτ “as much
as ever needed in the infinite reduction”, cf. the proof of Lemma 6.22 in the case
of Ins-nodes. This way, every tiτ reduces to a term qi.

By construction, the reduction tiτ →∗
H qi is necessary and τ is evaluated

enough in this reduction. Hence we can apply Lemma 6.22 (a) in the case of
1 ≤ i ≤ m, which gives us bRTG(ev(ti))τrenT G

→∗S
s∈con(ti)

renT G(rl(s)) bRTG(q′i)

for some term q′i with qi ⇒∗
H q′i. For m < i ≤ n, we define q′i = qi and extend

τ by τ(yi) = q′i, because then bRTG(ev(si))τrenT G
= yiτrenT G

= bRTG(q′i) for a
term q′i which satisfies qi ⇒∗

H q′i.
Let µ be like τ , but on the variables x1, . . . , xn we define µ(xi) = q′i and on

the type variables b1, . . . , bv of t̃ we define µ(bj) = ρjτ . Then:

bRTG(ev(t))τrenT G

= bRTG(t̃[x1/ev(t1), . . . , xm/ev(tm), xm+1/ym+1, . . . , xn/yn])τrenT G

= ft̃ bRTG(ev(t1))τrenT G
. . .bRTG(ev(tm))τrenT G

ym+1τrenT G
. . . ynτrenT G

ρ1τrenT G
. . . ρvτrenT G

>ε−−→
∗S

s∈con(t1)∪...∪con(tn) renT G(rl(s)) ft̃ bRTG(q′1) . . .bRTG(q′n)

ρ1τrenT G
. . . ρvτrenT G

= (ft̃ x1 . . . xn b1 . . . bv)µrenT G

= bRTG(t̃)µrenT G

Furthermore, t̃µ starts an infinite ↪→H-reduction, where µ is evaluated enough
by construction and terminating w.r.t. ↪→H.

Now theorem 6.16 can be proven using the above lemma:

Proof of theorem 6.16. This theorem is shown indirectly. Thus it has to be
shown that if a non-H-terminating term exists in TG, then there exists an SCC
G′ and a DP problem dpRenG′ = (Pren, ∅,Rren, a) such that there is an infinite
reduction of the form

s1
ε−→Pren t1

>ε−−→
∗
Rren

s2
ε−→Pren t2

>ε−−→
∗
Rren

. . .

This implies there is also an infinite reduction of the form

s1 →P]
ren

t1 →∗
Rren

s2 →P]
ren

t2 →∗
Rren

. . .

Let t be a non-H-terminating term. Then a substitution σ exists such that
tσ is a non-H-terminating ground term and where σ instantiates variables only
with H-terminating terms. Therefore, it can be assumed that σ is a normal sub-
stitution, i.e., σ(x) is a normal form w.r.t. →H. Then σ is evaluated enough in
every →H-reduction and also in every ↪→H-reduction. As H-termination implies
termination w.r.t. ↪→H, σ(x) is terminating w.r.t. ↪→H for all variables x.

Since tσ is a non-H-terminating ground term, it also is not terminating w.r.t.
↪→H, i.e., it starts an infinite ↪→H-reduction. By lemma 6.26, there is an infinite

66 CHAPTER 6. RENAMING

path in TG. Since TG only has a finite number of nodes, the infinite path must
end in some SCC G′. Only the infinite tail of this path is regarded further,
which only traverses nodes in G′. Thus, there is an infinite sequence of nodes
s1, t1, s2, t2, . . . and substitutions σ1, σ2, σ3, . . . such that for all i ∈ N:

• the path from si to ti is a DP path in G′ labelled with σi
1, . . . , σ

i
mi

(thus Pren contains the rule bRTG(si)σi
1 . . . σi

mi
→ bRTG(ev(ti))

• siσi is not terminating w.r.t. ↪→H

• σi = σi
1 . . . σi

mi
τ i for substitutions τ i

• σi
renT G

= σi
1 . . . σi

mi
τ i
renT G

• bRTG(ev(ti))τ i
renT G

>ε−−→
∗
Rren

bRTG(si+1)σi+1
renT G

Putting this together, we find an infinite chain:

bRTG(s1)σ1
renT G

=bRTG(s1)σ1
1 . . . σ1

m1
τ1
renT G

ε−→Pren
bRTG(ev(t1))τ1

renT G

>ε−−→
∗
Rren

bRTG(s2)σ2
renT G

=bRTG(s2)σ2
1 . . . σ2

m2
τ2
renT G

ε−→Pren
bRTG(ev(t2))τ2

renT G

>ε−−→
∗
Rren

bRTG(s3)σ3
renT G

=. . .

Thus, we have proven that for a Termination Graph which was built using the
expansion rules of definition 4.12 all nodes are H-terminating, if the renamed
and corrected DP problems created from it are finite, which means that no
infinite chain exists.

6.3 Examples for the strength of Renaming

Theorem 6.16 tells us that when adding TyCase-nodes and applying renaming
in order to create DP problems, we still have the property that if all DP problems
are finite, then all evaluations of instances of the start term w.r.t. the given
Haskell program are finite, as well. A question is, whether this added complexity
results in more strength.

As presented in the beginning of this chapter, the idea of renaming is the
separation of different cycles. Thus, the example 6.1 shall be considered again
to demonstrate that the intended separation is achieved. There, it is the case
that the evaluation of a Haskell term has to leave one cycle in order to get
into another cycle. However, these cycles are embedded in one SCC, therefore
they are contained in the same DP problem. The renaming will assign different
names, which makes such cycles distinct and thus, the call structure of the
problem is preserved in the created DP problem.

Example 6.27 (Separation of cycles by renaming). We want to reconsider
example 6.1 to show that the intended separation of cycles by assigning different
names to different nodes indeed gives the proposed results.

The presented renaming assigns different names to the nodes that start the
different implementations of the function terminate. This happens, because
of the fact that no instantiation edge exists between the two cycles. Thus, two

6.3. EXAMPLES FOR THE STRENGTH OF RENAMING 67

different names are assigned, leading to the separation of the functions in the
resulting DP problem.

P = { new f(S(x), Z, Nats) → new f(Z,Z,Nats)
new f(S(Z), S(y), Bool) → new f(Z,Z,Bool)
new f(S(x), S(S(y0)), Nats) → new terminate0(S(x), y0)
new f(S(S(x0)), S(y), Bool) → new terminate(x0, S(y))
new terminate0(x, S(y0)) → new terminate0(S(x), y0)
new terminate0(x,Z) → new f(Z,Z,Nats)
new terminate(S(x0), y) → new terminate(x0, S(y))
new terminate(Z, y) → new f(Z,Z,Bool) }

R = ∅

In contrast to the DP problem created without renaming, this DP prob-
lem is finite, since in it the two different cycles for the different instances of
terminate are separated into the two different functions new terminate0 and
new terminate, like it was proposed above. Finiteness of this DP problem can
thus be easily shown with the Size-Change processor [TG05], for example.

Another example that shows the improvements due to renaming is the pre-
viously presented example 3.1 for the start term take u (from m). There, the
predecessor of a natural number was computed explicitly, which makes termi-
nation analysis rather hard. However, if renaming is used, this can be solved
rather easily, as shown in the following example.

Example 6.28 (Easier DP problems due to renaming). We want to consider
termination analysis of the start term take u (from m) again. Please see ex-
ample 3.1 for the program and figure 3.1 for the Termination Graph.

If we create the DP problem for the SCC of take without renaming, it will
be the following:

P = { take(S(u0), from(m)) → take(p(S(u0)), from(S(m))) }

R = { p(S(Z)) → Z
p(S(S(u00))) → S(p(S(u00))) }

The above DP problem is too hard for many DP processors. This is, because
one has to find out that the rules for p decrement their argument. However,
this is only done in the case the end of the number is reached, where a con-
structor S is removed. A possibility to show this are polynomials with negative
coefficients [HM07], where a possible interpretation of the function symbols is
the following:

Pol(take)(x1, x2) = x1

Pol(from)(x1) = 0
Pol(S)(x1) = 1 + x1

Pol(p)(x1) = max{0, x1 − 1}

Then we have ordered the Dependency Pair strictly and can delete it. But search-
ing for such orders is a computationally complex process. This complexity can
be avoided if renaming is used. From the renamed Termination Graph shown in
figure 6.3, the following renamed DP problem for the SCC of take is created,
as shown in example 6.10.

68 CHAPTER 6. RENAMING

P = { new take(S(u0),m) → new take(new p(u0), S(m)) }

R = { new p(Z) → Z
new p(S(u00) → S(new p(u00)) }

This DP problem is much easier, because the recursive calls of new take and
of new p decrement the number of S constructors they contain. This is also
found out by the Size-Change processor [TG05], for example.

The reason, why this happens, is that the function p always demands one S
constructor. This constructor is already present in the Ins-node G containing
the term take (p (S u0)) (from (S m)), therefore this constructor does not
influence the rule that is applied to the subterm p (S u0) in node I and can be
left out. The renaming only collects the variables of node I, and therefore the
constructor is left out in the renamed term for this node.

Chapter 7

Innermost Termination
Analysis

Innermost termination analysis is far more powerful than regular termination
analysis, which was already stated in [AG00]. This is due to the fact that for
innermost termination a lot of modularity results exist which do not hold for the
general termination case. Furthermore, there are a lot of processors available in
the DP framework that are only applicable for innermost termination termina-
tion analysis, but not for the general case. One example for such a processor is
the Bounded Increase processor [GTSSK07] which allows to prove termination
of problems that terminate because eventually an upper boundary is reached
for some argument. This class of problems could not be solved automatically
before. In Haskell, such problems arise, for example, in case of the widely used
arithmetic sequences, e.g., [n..m]. This is illustrated in the following example.

Example 7.1 (Arithmetic Sequences in Haskell). In this example, the arith-
metic sequences of the form [n..m] shall be examined.

This expression will be translated into the expression enumFromTo n m by the
definition of the semantics of these arithmetic sequences [Jon03, Section 3.10].
The function enumFromTo is a class member of the class Enum, where the default
implementation of this class member, that is used for most types in the class
Enum, is mapping it to the function numericEnumFromTo. This function and
the functions that it uses, are defined in the Prelude. Below we give a slightly
simplified version of these rules.

numericEnumFromTo :: Int -> Int -> [Int]
numericEnumFromTo n m = takeWhile (<= m) (numericEnumFrom n)

numericEnumFrom :: Int -> [Int]
numericEnumFrom n = n : (numericEnumFrom (n+1))

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs) | p x = x : takeWhile p xs

| otherwise = []

69

70 CHAPTER 7. INNERMOST TERMINATION ANALYSIS

As can be seen, the function numericEnumFromTo works by taking a prefix
of the infinite list of natural numbers starting at n, until the upper boundary m
is reached. Note that we will reach this boundary, since the list elements are
strictly increasing. This will also be found out by the mentioned processor for
Bounded Increase.

The above example shows that innermost termination enables us to greatly
improve termination analysis for Haskell programs. Therefore, we will now
show, why this counterintuitive property holds. The intuition is, that we already
performed all lazy evaluation steps in the Termination Graph. Where we did not
succeed with the lazy evaluation strategy, we do a kind of innermost termination
analysis, since for the right-hand sides of Dependency Pairs, which result from
Ins-nodes, we regard all subterm children further, showing their termination.

In order to get innermost DP problems, we will first show that considering
minimal chains suffices. Then, we will show that from these minimal DP prob-
lems, we can switch to minimal innermost DP problems, using the already
existing technique of the Modular Non-Overlap Check [GTSK05b].

7.1 Towards Innermost: Minimal Chains

Termination analysis for DP problems is more powerful when only minimal
chains have to be considered, instead of having to consider all possible chains.
Thus, it would be an improvement in strength, if it would suffice to show absence
of minimal chains, instead of arbitrary chains, for the DP problems created from
a Termination Graph. This section will show that this property holds.

In order to be able to talk about the SCCs that correspond to a DP problem
created from a Termination Graph, the following definition creates a mapping
from a TRS to the corresponding SCCs in the graph.

Definition 7.2 (functions SCC and SCCs). Let TG be a Termination Graph,
(P, ∅,R, a) be a DP problem created from it.

The result of the function SCC(P) is the SCC in the graph TG the TRS P
was read from.

The result of the function SCCs(R) is the set of SCCs the TRS R was read
from.

Then it holds that every non-terminating evaluation in the rules of a DP prob-
lem read from TG implies the existence of an SCC for these rules. This is
formalized in the following lemma:

Lemma 7.3. Let TG be a Termination Graph, (P, ∅,R, a) be a DP problem
created from it.

If an infinite reduction t0 →R t1 →R t2 →R . . . exists, then SCCs(R) 6= ∅.

Proof. Assume there exists an infinite reduction t0 →R t1 →R t2 →R
Since the TRS R is finite, there exist l = f(s1, . . . , sn) → r ∈ R and an

infinite set I = {i1, i2, . . .} ⊆ N with ij < ij+1 ∀j ∈ N, such that

tij = Cj [lσj]πj and tij+1 = Cj [rσj]πj

for some contexts Cj , substitutions σj , and positions πj ∈ Occ(Cj).

7.1. TOWARDS INNERMOST: MINIMAL CHAINS 71

Thus, the defined function symbol f occurs infinitely often. Renaming as-
signs different names to different nodes that start with a defined function sym-
bol, except for the case of Ins-nodes. This implies that an Ins-node must exist,
as otherwise there would be only non-recursive functions. Since the node, whose
fresh name is f , can be reached again, there must be a cycle in the graph. There-
fore, an SCC exists which contains this cycle, i.e., we have found an element of
SCCs(R), which implies that SCCs(R) 6= ∅.

To show the main theorem, we will use an ordering on SCCs in a Termination
Graph. The idea of this ordering is, that an SCC G1 is smaller than another
SCC G2, if from the smaller SCC G1, rules in the other SCC G2 are created.
This ordering is not necessarily irreflexive, i.e., it is not certain that an element
is larger than itself in the ordering. This could happen, because an SCC might
also contain the nodes from which rules have to be created for the DP paths in
that SCC. This is illustrated in the following example.

Example 7.4 (Creation of rules from the same SCC as the Dependency Pairs).
We construct the Termination Graph for the start term f x y for the following
Haskell program.

data Nats = Z | S Nats

f :: Nats -> Nats -> Nats
f (S x) y = f (f (g x) y) y

g :: Nats -> Nats
g Z = S Z
g (S x) = g x

As can be seen in the Termination Graph for the given start term, that is
shown in figure 7.1, we have two SCCs in the Termination Graph. The first
one consists of the nodes A,C,E,F and the other consists of the nodes G,I,K.
The path from node A to node E is a DP Path, therefore rules must be created
for its subterms. As subterm, we have the node F. Because this is an Ins-node,
the rules that are created from this node start in node A. Therefore, we have the
same SCC for the rules as for the Dependency Pairs. In this situation we do
not want that an SCC is bigger than itself, because then we could not use this
ordering as an induction relation, because it would not be well-founded.

However, the SCC consisting of the nodes G,I,K shall be smaller than the
SCC A,C,E,F. This is, because we have that the SCC G,I,K is below the SCC
A,C,E,F and cannot reach it.

To simplify the ordering, we use an ordering that does not consider whether
rules have to be created or not. So we are sure that the intended order based
on the creation of rules is contained in the order �TG. This order is made
irreflexive by demanding different SCCs.

Definition 7.5 (�TG). Let G1, G2 be two SCCs in a Termination Graph TG.
G1 �TG G2 iff there exist a node n1 ∈ G1 and a node n2 ∈ G2 such that a

path exists from n1 to n2 and G1 6= G2.

72 CHAPTER 7. INNERMOST TERMINATION ANALYSIS

Figure 7.1: Termination Graph for f x y, illustrating the order on SCCs

Since we made the relation irreflexive, we can show that this is indeed a
well-founded order. Thereby, it is usable as an induction relation.

Lemma 7.6. The order �TG is well-founded.

Proof. Let TG be a Termination Graph. Since it is finite, only finitely many
SCCs exist. Let S = {G1, . . . , Gn} be the set of SCCs, where n ∈ N.

Assume, we have an infinite sequence G′1, G
′
2, . . . where G′i �TG G′i+1. Be-

cause S is finite, there must be a Gk ∈ S such that an infinite set I = {ij | j ∈
N, G′ij

= Gk} ⊆ N exists. Since the path relation is transitive, the order �TG

is transitive, too. This implies that Gk �TG Gk holds. But this would imply
Gk 6= Gk, yielding a contradiction.

Now the main theorem of this section shall be proven, which states that it
suffices to consider only minimal chains. Before, all chains had to be considered,
represented by the flag a for DP problems.

This flag can now be replaced by the flag m, yielding easier problems for the
DP-framework backend. This property holds, because we create DP problems

7.1. TOWARDS INNERMOST: MINIMAL CHAINS 73

for all SCCs in the Termination Graph. This is, because we do not know,
whether a rule will be evaluated or not. Thereby, we could switch to a kind
of “innermost” evaluation for Ins-nodes, since these are the nodes from which
the creation of rules started. The claim is that we either have already proven
termination of the rules, or a DP problem exists for an SCC of the rules, such
that we will find an infinite chain in that DP problem.

Theorem 7.7 (Minimal chains). For the set of DP problems created from a
Termination Graph, the following holds:

There exists an infinite DP problem (P, ∅,R, a) iff there exists an infinite
minimal (P ′, ∅,R′)-chain for some DP problem (P ′, ∅,R′, a) in the set of DP
problems.

Proof. Since every minimal chain is also a chain, this direction holds trivially.
For the other direction, we start with an infinite DP problem (P, ∅,R, a).

According to [GTSK05b], the DP problem (P, ∅,R, a) is infinite iff either of the
following holds:

• There exists an infinite (P, ∅,R)-chain, or

• R is not terminating.

Case 1: R is terminating
This implies the existence of an infinite (P, ∅,R)–chain, i.e., there exists an

infinite sequence
s1 → t1, s2 → t2, . . .

from P (with V(si)∩V(si+1) = ∅ ∀i ∈ N) and a substitution σ over an infinite
domain such that tiσ →∗

R si+1σ. Since R is terminating, especially all tiσ are
terminating w.r.t. →R. Thus, this chain is a minimal chain, which proves the
theorem.

Case 2: R is not terminating
This implies the existence of an infinite reduction t0 →R t1 →R t2 →R . . .

Case 2.1: SCCs(R) = ∅
As shown in lemma 7.3, this case cannot occur.

Case 2.2: SCC(P) �TG G′ for some G′ ∈ SCCs(R) and the DP problem
created for G′ is infinite

In this case, the theorem inductively holds, since �TG is well-founded.

Case 2.3: For all G′ ∈ SCCs(R) with SCC(P) �TG G′, the DP problem created
for G′ is not infinite

For this case, an infinite minimal chain shall be constructed.
Since R is not terminating, we have SCCs(R) 3 SCC(P), since all sub-

SCCs of SCC(P) are not infinite by assumption.

74 CHAPTER 7. INNERMOST TERMINATION ANALYSIS

Without loss of generality we can assume that the first term t0 is a node
on SCC(P) with an incoming instantiation edge. This holds since the only
possibility to have an infinite reduction is by traversing nodes on SCC(P), as
all DP problems created for sub-SCCs are not infinite by assumption.

Starting in t0, we follow the path of the infinite reduction. When reach-
ing an Ins-node, all children that are not connected via its instantiation node
are considered. If one of them starts an infinite reduction, then this infinite
reduction will be the guide for building the minimal chain and no Depen-
dency Pair is added to the sequence. Otherwise, if all children not connected
via the instantiation edge only start finite evaluations, the Dependency Pair
bRTG(t0) σ1 . . . σm → bRTG(ev(t)) is added to the sequence, where t is the
term of the Ins-node and σ1, . . . , σm are the substitutions the edges on the
path were labelled with. Since all subterms are terminating by assumption, this
Dependency Pair does not violate the minimality. Building the sequence is then
continued from the node t̃, which is the node connected to t via the instantiation
edge. The term t0 is now being updated with t̃.

Since this sequence always respects the minimality condition, the whole se-
quence is minimal. As Dependency Pairs are created for every DP path, and
the nodes t0 and t are connected by such a path (t0 has an incoming instan-
tiation edge in SCC(P), t has an outgoing instantiation edge in SCC(P)), P
contains all Dependency Pairs in this sequence. Therefore, an infinite minimal
chain exists.

An example that illustrates the above theorem is given below.

Example 7.8 (Minimal chain exists for an infinite Haskell program). We want
to analyze termination of the start term f x in the following Haskell program:

f :: Bool -> Bool
f x = f (f x)

This start term is clearly not H-terminating, because an infinite evaluation
exists:

f x →H f (f x)
→H f (f (f x))
→H . . .

Now, we want to consider the DP problem created from the Termination
Graph for this start term, which is shown in figure 7.2.

Figure 7.2: Termination Graph for f x, illustrating minimal chains

7.2. SWITCHING TO INNERMOST 75

The DP problem for the only SCC in the Termination Graph is:

P = { F (x) → F (f(x))
F (x) → F (x) }

R = { f(x) → f(f(x)) }

As can be seen, we also have an infinite chain that stacks up the function f :

F (x) →P F (f(x))
→P F (f(f(x)))
→P . . .

However, this is not a minimal chain, since the subterm f(x) is not terminat-
ing. But since we consider the children of Ins-nodes as well, we also follow these
and create Dependency Pairs for them. This generates the second Dependency
Pair, which does not correspond to a Haskell evaluation. Using this Dependency
Pair, another infinite chain exists, which simply is F (x) →P F (x) →P This
is an infinite minimal chain.

7.2 Switching to Innermost

The previous section showed that it suffices to only consider minimal chains.
This is one of the necessary preconditions for switching to innermost termination
analysis, i.e., setting Q = R. A DP processor that does this is the Modular
Non-Overlap Check processor which is presented in [GTSK05b]. This section
will show that this processor can always be applied, and hence innermost DP
problems can directly be generated.

Theorem 7.9 (Innermost termination analysis suffices). Let TG be a Termi-
nation Graph, let (P, ∅,R,m) be a DP problem created from it.

Then this DP problem can be replaced with (P,R,R,m), i.e., only innermost
termination analysis needs to be performed.

Proof. This will be proven using theorem 32 of [GTSK05b] which introduces
and proves soundness and completeness of the Modular Non-Overlap Check
processor.

In order for this processor to be applicable to a DP problem (P,Q,R, f),
four properties have to be fulfilled:

1. for all s → t ∈ P, non-variable subterms of s do not unify with left-hand
sides of rules from R (after variable renaming), and

2. Q→R is locally confluent, and

3. Q ⊆ R, and

4. f = m.

If these properties are fulfilled, then the result of the processor is the DP prob-
lem (P,R,R,m).

Let (P, ∅,R,m) be a DP problem created from TG, i.e., Q = ∅. Thus, the
properties 3 and 4 are fulfilled trivially.

76 CHAPTER 7. INNERMOST TERMINATION ANALYSIS

Property 1 is fulfilled, since the left-hand side of a DP problem created from
a Termination Graph is always of the form (f x1 . . . xn b1 . . . bv) σ1 . . . σm, where
every σi is of the form [y/(ci z1 . . . zk)] where every ci is either a data- or a type-
constructor and z1, . . . , zk are fresh variable. Therefore, no left-hand side of a
rule can unify with a non-variable subterm, since every left-hand side starts
with a defined symbol.

As a last step, it has to be shown that property 3 is satisfied, i.e., that
Q→R=→R is locally confluent. First is shall be noted that also every left-hand
side of a rule is of the above form, i.e., there are no defined symbols in subterms
of the left-hand side.

Assume that there are two rules l1 → r1 ∈ R and l2 → r2 ∈ R, where a
most general unifier µ of l1 and l2 exists. This means that the defined function
symbol, the rules start with, must be the same. Therefore, the rule paths that
led to these rules must start in the same node, as otherwise renaming would
have assigned different function symbols.

For the left-hand sides of the rules, let l1 = (f x1 . . . xn b1 . . . bv) σ1,1 . . . σ1,m1

and let l2 = (f x1 . . . xn b1 . . . bv) σ2,1 . . . σ2,m2 . If there exists an i ∈ N such
that σ1,i 6= σ2,i and for all j < i it holds that σ1,j = σ2,j , then σ1,i and σ2,i

must have resulted from a Case- or a TyCase-node. Because of σ1,i 6= σ2,i,
a variable y exists, for which σ1,i(y) 6= y 6= σ2,i(y) and σ1,i(y) 6= σ2,i(y) holds.
Since both heads of σ1,i(y) and σ2,i(y) are constructors, this would lead to a
clash failure in unification, i.e., this contradicts the assumption that l1µ = l2µ.
Therefore, this case cannot occur.

Otherwise, it holds that σ1,i = σ2,i for all 1 ≤ i ≤ min{m1,m2}. If m1 < m2,
then the rule path π1 that led to the rule l1 → r1 is a prefix of the rule path
π2 that led to l2 → r2. Thus, the node that r1 was created from must not
be a Case-, a TyCase-, or an Eval -node, since π1 ended in that node. As
π2 is a rule path, all nodes, except for the node r2 was created from, must be
Case-, TyCase-, or Eval -nodes. Since π1 is a real prefix of π2, the node r1

was created from cannot be the node r2 was created from. Thus, the node r1

was created from must be a Case-, TyCase-, or Eval -node, in contradiction
to the above. Hence, this case cannot occur, either. Analogously, m2 > m1 can
never occur. Therefore, m1 = m2 can be concluded, which entails that the rule
paths must be the same, since they must end in the first node that is neither
a Case-, nor a TyCase-, nor an Eval -node. Hence, the left- and right-hand
sides of the rules must be the same, i.e., l1 → r1 = l2 → r2.

From the above, it can be concluded that R is non-overlapping and therefore
no critical pairs exist. Thus, the relation →R is locally confluent.

Another interesting question is, whether it would be possible to set Q to
{f(x1, . . . , xn) → . . . | f defined symbol, n = arity(f)}. Then, the created
DP problems must only be regarded as constructor rewrite systems, i.e., one has
to only consider chains where every subterm of a left-hand side of a Dependency
Pair consists only of constructors and variables. Unfortunately, this is not the
case, as the correctness of the Haskell termination analysis would be destroyed,
as illustrated in the following example.

7.2. SWITCHING TO INNERMOST 77

Example 7.10. Consider the following Haskell program:

f :: Int -> Int
f x = f (div x 0)

with the start term f x (where div is the standard division function, i.e.,
especially it holds that div _ 0 = error []). As can easily be seen, the start
term is not H-terminating, since an infinite evaluation of a ground instance
exists.

The above program would result in the following DP problem:

P = {F (x) → F (div0(x))}
R = {div0(Pos(x0)) → error([]), div0(Neg(x0)) → error([])}

When considering Q = R, then we find that an infinite (P,Q,R)-chain exists:
Let σ = [x/error([])], then F (x)σ = F (error([])) →P F (div0(error([]))) where
the term F (div0(error([]))) is normal w.r.t. R and therefore it is also normal
w.r.t. Q. This term starts the following infinite reduction, where every term is
normal w.r.t. Q:

F (div0(error([]))) →P F (div0(div0(error([])))) →P . . .

However, if Q is set to {div0(x) → . . .}, then the term F (div0(error([])))
is not normal w.r.t. Q, but it cannot be further reduced using the rules in R.
Therefore, this is incorrect, as every chain contains this term (really they must
contain a term of the form F (div0(g(s1, . . . , sn))) where g 6∈ {Pos, Neg}, since
DP problems do not regard types).

In order to fix this, one would have to add the set Rerror to R, where
Rerror = {f(x1, . . . , xi−1, error(y), xi+1, . . . , xn) → error(y) | y is a fresh
variable, f is a defined symbol in R, arity(f) = n, 1 ≤ i ≤ n}. Then an
error term could no longer block the chain. But this increases the size of R
a lot, and the rules in R could be merged into P by the Narrowing proces-
sor [AG00, GTSKF03], creating a large set of Dependency Pairs that would
have to be ordered. Therefore, setting Q to these more general terms is not
used.

Chapter 8

Evaluation of the
Improvements

In order to assess whether the presented improvements are useful in practice,
we compared an AProVE version without the described improvements, which
we will call AProVEplain, to a version where all the above improvements where
enabled, which shall be identified with AProVEfull. Thereby, we measure the im-
provements presented in Chapters 6 and 7. The DP framework configuration for
both versions was the strategy for the termination competition in 2007. Please
note that some processors were not applicable during the runs of AProVEplain,
since here no minimal or innermost information was available.

In order to assess the effects of renaming, we furthermore ran over the set
of examples another version of AProVE, where renaming was used and created
first-order DP problems, but these were not restricted to minimal chains and
hence were neither restricted to innermost chains. Also, no type classes were
introduced into the created terms, i.e., the addition of the type variables in
the renaming was not made. This version of AProVE is called AProVEren in
the following. This comparison thus measure the effects of the improvements
presented in Chapter 6, without the improvements of Chapter 7.

We ran all versions on a test corpus consisting of 1281 examples which were
all extracted from libraries shipped with the Hugs interpreter [JP99]. The li-
braries we tested were FiniteMap, List, Maybe, Monad, Prelude, and Queue.
Here, we tried to prove start terms for every exported function. For such a
function, we tried the general version, and where applicable, a version of the
start term where the type classes had been instantiated once with all instances
for that type class. It is worth noting that our Prelude implementation differs
from the Hugs implementation, as it contains quite a few native functions that
are not implemented in Haskell, but are implemented on the processor. For
these, a pure Haskell implementation has been developed to model the function
as closely as possible. These integer operations assume that the numbers for an
Int are not bounded, i.e., the predefined data type Int behaves just like the
predefined data type Integer.

A result can either be a YES, in which case the start term could successfully
be shown H-terminating, MAYBE, where no proof could be found, or Time-
out, when no proof could be found within 5 minutes. It should be mentioned

79

80 CHAPTER 8. EVALUATION OF THE IMPROVEMENTS

that showing 100 % of the start terms as terminating cannot be reached, since
some of the start terms are non-terminating.

Version YES MAYBE Timeout
AProVEplain 726 (56.67 %) 104 (8.11 %) 451 (35.20 %)
AProVEren 973 (75.95 %) 86 (6.71 %) 222 (17.33 %)
AProVEfull 1008 (78.68 %) 68 (5.30 %) 205 (16.00 %)

Table 8.1: Overall results of AProVEplain, AProVEren and AProVEfull

For the described set of modules and start terms, the total results presented
in table 8.1 were obtained. As can be seen in those results, the improvements
resulted in a total of 21.8 % more examples that could be proven terminating.
Therefore, it is conjectured that the presented improvements are of practical
value. Especially, the renaming seems to have a great impact onto the results,
since with it enabled we already have an increase of almost 19.2 % more examples
which could be proven terminating.

When looking closer at the modules, it is interesting in which modules these
gains have been made. Table 8.2 shows the numbers broken down according to
the modules.

Module Version YES MAYBE Timeout

FiniteMap
AProVEplain 116 (36.13 %) 16 (4.98 %) 189 (58.87 %)
AProVEren 233 (72.58 %) 0 (0.00 %) 88 (27.41 %)
AProVEfull 258 (80.37 %) 0 (0.00 %) 63 (19.62 %)

List
AProVEplain 64 (36.78 %) 29 (16.66 %) 81 (46.55 %)
AProVEren 165 (94.82 %) 5 (2.87 %) 4 (2.29 %)
AProVEfull 168 (96.56 %) 4 (2.29 %) 2 (1.14 %)

Maybe
AProVEplain 9 (100.00 %) 0 (0.00 %) 0 (0.00 %)
AProVEren 9 (100.00 %) 0 (0.00 %) 0 (0.00 %)
AProVEfull 9 (100.00 %) 0 (0.00 %) 0 (0.00 %)

Monad
AProVEplain 68 (85.00 %) 11 (13.75 %) 1 (1.25 %)
AProVEren 69 (86.25 %) 11 (13.75 %) 0 (0.00 %)
AProVEfull 69 (86.25 %) 11 (13.75 %) 0 (0.00 %)

Prelude
AProVEplain 464 (67.05 %) 48 (6.93 %) 180 (26.01 %)
AProVEren 492 (71.09 %) 70 (10.11 %) 130 (18.78 %)
AProVEfull 499 (72.10 %) 53 (7.65 %) 140 (20.23 %)

Queue
AProVEplain 5 (100.00 %) 0 (0.00 %) 0 (0.00 %)
AProVEren 5 (100.00 %) 0 (0.00 %) 0 (0.00 %)
AProVEfull 5 (100.00 %) 0 (0.00 %) 0 (0.00 %)

Table 8.2: Comparison of AProVEplain, AProVEren, and AProVEfull by modules

In these results, one sees especially that for the modules FiniteMap and
List the number of proven start terms has more than doubled. This can be
explained by the high amount of higher order functions for these structures.
Here, usually the provided function is applied to each element of the structure
consecutively, i.e., the output of this application does not influence the ter-
mination behavior. However, such problems cannot be transformed using the
A-Transformation [GTSK05a], i.e., they cannot be converted into first-order

81

DP problems. Then, proving termination is a much harder problem, as can be
seen in the results.

Furthermore, more than 5 % have been gained in the Prelude. This is
again mostly due to the renaming generating first order terms, but also due
to the minimal innermost strategy that suffices: Examples such as gcd, which
calculates the greatest common divisor using Euclid’s algorithm, can now be
proven with the processor for Bounded Increase [GTSSK07]. This processor
was not applicable before.

Chapter 9

Lazy-Termination Analysis

Since Haskell is a lazy-evaluating language, terms which are not H-terminating
are still of interest, since they can contribute to an H-terminating evaluation by
generating a sequence of constructors. An example of a lazy-terminating term is
repeat Z, where the function repeat is defined as repeat x = x : repeat x.
Here, a sequence of list constructors is built which could, for example, be con-
sumed by a take function.

A lazy-terminating function could also build infinite constructor sequences
for terms that are arguments of another infinite constructor sequence, such as
repeat (repeat Z), which is an infinite list of infinite lists filled with Z. Such
terms shall still be called lazy-terminating. However, terms such as repeat bot,
where bot is defined as bot = bot, shall not be lazy-terminating, i.e., we de-
mand constructor terms for every argument of a constructor. Still, this last
example might be useful for a program; if only the list structure is of interest,
but not the contained elements. This notion of lazy termination will not be
handled by our approach, since here only certain arguments of certain construc-
tors are being regarded. Thus, an automatic selection of these would be hard,
especially for user-defined data types.

Lazy-Termination analysis might also help in reusing termination proofs.
If it could for example be found out that a function only requires a lazy-
terminating argument to be H-terminating, then the idea could be to reuse
the H-termination proof of that function and show Lazy-Termination of the
argument.

In the following, Lazy-Termination shall be defined formally. This definition
follows the definition of [PSS97], but extends it to functional types. For these,
we allow the application to an arbitrary lazy-terminating term. Then this new
application must also be lazy-terminating in order to call the function lazy-
terminating. So for example, the function repeat is lazy-terminating, since for
every lazy-terminating argument t the term repeat t is lazy-terminating, as
well.

Definition 9.1 (lazy-terminating). Every ground Haskell expression is 0-lazy-
terminating. A ground Haskell expression t is n-lazy-terminating iff either t is
H-terminating, or t →∗

H (c t1 . . . tn) for a constructor c and every ti is (n− 1)-
lazy-terminating, or t has a functional type and (t s) is n-lazy-terminating for
every n-lazy-terminating term s.

83

84 CHAPTER 9. LAZY-TERMINATION ANALYSIS

A ground Haskell expression is lazy-terminating iff it is n-lazy-terminating
for every n ∈ N.

A Haskell expression t is lazy-terminating, iff for every substitution σ that
instantiates the variables in t with expressions of correct types, tσ is lazy-
terminating.

In order to show Lazy-Termination of a term, we want to reuse the analysis
for H-Termination. In order to do this, a class instance is generated for every
data type of the Haskell program. This instance consumes every constructor up
to a certain depth.

9.1 Generating Instances for Lazy-Termination

Whether a Haskell expression is lazy-terminating or not can be reduced to H-
termination analysis, which was already mentioned in [PSS97] for terms having
non-functional types. We follow the approach presented there, but use a class
LazyTermination to integrate the lazy termination analysis into Haskell. This
class is defined in the following.

Definition 9.2 (LazyTermination class). The following class is added as a
predefined, not exported class to the Prelude:

class LazyTermination a where
lazyTerminating :: Nats -> a -> Bool

where Nats is the definition of natural numbers in Peano notation. These are
defined as

data Nats = Z | S Nats

Then, for every type an instance of this class is generated which consumes
the data constructors of that type. This shall be illustrated in the following
example.

Example 9.3 (Lazy Termination instance). Consider the type

data Tree a = Leaf a | Node a (Tree a) (Tree a)

For this type, the following instance, which is used for Lazy Termination
analysis, is generated:

instance LazyTermination a => LazyTermination (Tree a) where
lazyTerminating Z _ = True
lazyTerminating (S n) (Leaf x) = lazyTerminating n x
lazyTerminating (S n) (Node x l r) = (lazyTerminating n x)

&& (lazyTerminating n l) && (lazyTerminating n r)

The problem is that also in the case of Lazy Termination analysis, an exten-
sion with fresh variables is needed, but variables are currently fixed to represent
H-terminating terms. This semantics shall not be changed, so another mecha-
nism is needed to handle functional types. For this purpose, a function is used
that non-deterministically introduces arbitrary H-terminating terms on right-
hand sides, namely the function terminator. This function is added to the

9.1. GENERATING INSTANCES FOR LAZY-TERMINATION 85

Prelude, and has the special semantics during evaluation that it will be evalu-
ated to a fresh variable. In order to represent arbitrary lazy-terminating terms,
the class definition of LazyTermination is extended by a new defined function
lazyGenerator.

Definition 9.4 (LazyTermination class with member lazyGenerator). The
class LazyTermination, which was defined in definition 9.2, is extended to the
following definition:

class LazyTermination a where
lazyTerminating :: Nats -> a -> Bool
lazyGenerator :: a

The instance presented in example 9.3 is extended by the following definition
of lazyGenerator.

Example 9.5 (Extension of example 9.3 to lazyGenerator). The function
lazyTerminating remains as presented above, so only the definition of the ad-
ditional function lazyGenerator is presented here.

instance LazyGenerator a => LazyGenerator (Tree a) where
lazyTerminating ...

lazyGenerator
| terminator = Leaf lazyGenerator
| otherwise = Node lazyGenerator lazyGenerator lazyGenerator

As can be seen, the function terminator is used to introduce non-determinism
in the evaluation. Here, it is used as a Bool which then determines which con-
structor shall be created.

In order to also handle terms having a functional type, an instance of the
class LazyTermination for the constructor -> must be provided. This instance
is defined as follows:

Definition 9.6 (Handling of functional types). The following instance is added
to the Prelude as a non-exported instance of the class LazyTermination.

instance (LazyTermination a, LazyTermination b)
=> LazyTermination (a -> b) where
lazyTerminating Z _ = True
lazyTerminating (S n) f
= lazyTerminating (S n) (f lazyGenerator)

lazyGenerator x
= (lazyTerminating terminator x) ‘seq‘ lazyGenerator

For the function lazyTerminating, we see that a function is (n + 1)-lazy-
terminating, if the result of the function applied to a lazy terminating argu-
ment, which is generated by the function lazyGenerator, is also (n + 1)-lazy-
terminating.

The result of the function lazyGenerator must be a function that is lazy-
terminating if its argument is lazy-terminating. The requirement for the argu-
ment to be lazy terminating is the first part before the ‘seq‘, which means that

86 CHAPTER 9. LAZY-TERMINATION ANALYSIS

the argument must be m-lazy-terminating for all possible values of m. Then
the function returns a lazy terminating term, which is the lazyGenerator after
the ‘seq‘.

For every other type, the instances are generated according to their defini-
tion. These derived instances require a term with a data constructor as head
symbol, and evaluate the arguments further, where one S constructor less is
used for the arguments. This corresponds to the definition of lazy termination,
where a term starting with a constructor is said to be (n + 1)-lazy terminating,
iff its arguments are n-lazy terminating.

Definition 9.7 (Generated instances of LazyTermination for data types). Let

data T a1 . . . am = C1 ρ1,1 . . . ρ1,k1 | . . . | Cl ρl,1 . . . ρl,kl

be a type declaration in a Haskell program, where a1, . . . , am are type variables,
C1, . . . , Cl are the data constructors of this type, and where ρi,j is a type for all
i, j.

Then for the type T the following instance of the class LazyTermination is
generated:

instance (LazyTermination a1, . . ., LazyTermination am)
=> LazyTermination (T a1 . . . am) where
lazyTerminating Z _ = True
lazyTerminating (S n) (C1 x1 . . . xk1)
= (lazyTerminating n x1) && . . . && (lazyTerminating n xk1)

...
lazyTerminating (S n) (Cl x1 . . . xkl)
= (lazyTerminating n x1) && . . . && (lazyTerminating n xkl)

lazyGenerator
| terminator = C1 lazyGenerator1 . . . lazyGeneratork1

| terminator = C2 lazyGenerator1 . . . lazyGeneratork2

...
| terminator = Cl−1 lazyGenerator1 . . . lazyGeneratorkl−1

| otherwise = Cl lazyGenerator1 . . . lazyGeneratorkl

where the indices of the lazyGenerator arguments shall only indicate the
number of arguments. If there is a constructor Ci that has no arguments, then
the right-hand side of the function lazyTerminating that consumes this con-
structor is set to be True.

These generated instances will then be used to reduce the analysis of lazy-
termination to the analysis of H-termination. The correctness of this approach
is shown in the next section.

9.2 Reduction of Lazy-Termination to H-Termi-
nation

When a start term t is to be checked for lazy termination, the instances of the
class LazyTermination for all types are added. Then, the start term is replaced

9.2. REDUCTION OF LAZY-TERMINATION TO H-TERMINATION 87

by lazyTerminating n t, which will be analyzed for H-termination. We will
show that from the H-termination of this new start term, lazy-termination of
the initial start term has been shown.

In order to show the main theorem, we first need a new relation that is able
to also append new lazy terminating arguments.

Definition 9.8 (H). For two terms s and t, we have s H t iff

• s →H t, or

• t = (s u) for an arbitrary lazy-terminating term u, if s has a functional
type.

This relation is defined in such a way that the definition of lazy termination
is modelled with it. This can be seen from the definition of lazy termination,
and is formalized in the following.

Corollary 9.9 (Properties of H). For the relation H, it holds that a term
t is (n + 1)-lazy-terminating, iff either t is H-terminating, or t ∗

H (c t1 . . . tn)
for a constructor c and all ti are n-lazy-terminating.

The above relation is used in order to show that the class LazyTermination
does indeed help in proving lazy-termination of a start term. This is done by
showing that if lazyTerminating n t is H-terminating, then lazy-termination
of t can be concluded. This is proven in the following theorem.

Theorem 9.10 (H-termination of lazyTerminating proves Lazy-Termination).
Let t be a Haskell term, let TG be a Termination Graph for the start term
lazyTerminating n t.

The term t is lazy-terminating, if lazyTerminating n t is H-terminating.

Proof. Assume, the term t is not lazy-terminating, but lazyTerminating n t
is H-terminating.

In case t is not a ground term, we know that a ground instance of t exists,
that is not lazy-terminating. Thus, it suffices to only consider the case where t
is a ground term, since this shows the theorem for non-ground terms, as well.

Because t is not lazy-terminating, t is not H-terminating, either. Further-
more, there must be a m ∈ N, for which t is not (m + 1)-lazy-terminating,
i.e., there exists a term t′, a context s, and a position π ∈ Occ(s), such that
t ∗

H s[t′]π, t′ 6 ∗
H (c t′1 . . . t′l) for any constructor c of arity l, π = i1 . . . im with

ij ∈ N for all 1 ≤ j ≤ m, and for all π′ ∈ Occ(s) with either |π′| < |π| or where
π′ = i1 . . . im−1 i with i < im, we have s|π′ = (c′ s′1 . . . s′k) for a constructor c′.

The term t′ is not H-terminating, either. This holds, because it cannot be
the case that t′ ∗

H e for an error term e. Otherwise, this term would make
the term t H-terminating, which it is not. Furthermore, t′ does not reach any
weak head normal form by assumption, therefore its evaluation must continue.
Thus, only cases (a) and (b) from definition 2.7 can apply, which correspond to
Haskell evaluation and argument saturation.

For the start term lazyTerminating (m + 1) t, the reduction with →H

starts as follows (where rest is some Haskell term, and the natural numbers are
converted to their representation using Z and S):

lazyTerminating (m + 1) t →∗
H lazyTerminating 1 t′ && rest

88 CHAPTER 9. LAZY-TERMINATION ANALYSIS

As seen in definition 9.6, whenever a function type is encountered, it is
supplied with another arbitrary lazy-terminating argument. Since the arity of
every type is finite, every functional type will be reduced to a non-functional
type. Thus, the analysis of functional types is reduced to that of non-functional
types.

By construction, all rules for lazyTermination for non-functional types re-
quire a constructor on the second position, when the first argument contains
the representation of a number that is greater than zero. Since we have the
representation of 1 as the first argument, and no constructor can be reached
starting with the term t′, the evaluation position for the reached term is al-
ways at least the second position of the term starting with lazyTerminating.
Therefore, an infinite evaluation of lazyTerminating n t exists, contradicting
the assumption that this term was H-terminating.

9.3 Examples for Lazy-Termination

After we have shown the correctness of our approach, we want to present exam-
ples to illustrate how Lazy-Termination of a start term is proven.

First, we are coming back to the example from the beginning of this chapter.
It shall now be shown that the start term repeat (x :: Nats) is indeed lazy-
terminating.

Example 9.11 (Lazy Termination analysis of repeat). First, the instances of
the class LazyTermination are generated for the data types Nats and for the
predefined lists. Please note that the second data type definition is not present
in the final program, but it is only included to show the constructors of the
predefined lists.

data Nats = Z | S Nats
data [a] = [] | a : [a]

instance LazyTermination Nats where
lazyTerminating Z _ = True
lazyTerminating (S n) Z = True
lazyTerminating (S n) (S x) = lazyTerminating n x

lazyGenerator | terminator = Z
| otherwise = S lazyGenerator

instance LazyTermination a => LazyTermination [a] where
lazyTerminating Z _ = True
lazyTerminating (S n) [] = True
lazyTerminating (S n) (x:xs) = (lazyTerminating n x) &&

(lazyTerminating n xs)

lazyGenerator | terminator = []
| otherwise = lazyGenerator : lazyGenerator

9.3. EXAMPLES FOR LAZY-TERMINATION 89

These instances are added to the program, and the start term is replaced by
lazyTerminating n (repeat (x :: Nats)). Then the Termination Graph is
developed for this start term, which is shown in figure 9.1.

Figure 9.1: Termination Graph for Lazy-Termination analysis of start term
repeat (x::Nats)

As can be seen, two SCCs exist in the Termination Graph. For these, the
following DP problems are created (after applying renaming and correction):

P = { new asAs(S(n0000), S(x00), vy4) → new asAs(n0000, x00, vy4) }
R = ∅

and

90 CHAPTER 9. LAZY-TERMINATION ANALYSIS

P = { new lT (S(n000), x) → new lT (n000, x) }
R = ∅

Both of these DP problems are finite, as can be shown by the Size-Change-
Principle [TG05], for example. Therefore, we can conclude that the initial start
term was lazy-terminating.

Please note that our approach to show lazy-termination is different from the
approach presented in [PSS97]. There, a ParSplit-node with a constructor head
is required in all cycles. This is not the case for our approach, which allows to
show lazy-termination of functions that only sometimes generate a constructor,
but this case is always reached. Such a Haskell program is presented in the
following example.

Example 9.12 (Not every cycle contains a constructor split). We want to show
lazy termination of the start term h m n for the following Haskell program.

data Nats = Z | S Nats
data List a = Nil | Cons a (List a)

h :: Nats -> Nats -> List Nats
h Z n = Cons n (h n (S n))
h (S m) n = h m n

As we can see, the function h will decrement its first argument until it reaches
Z, then it produces the constructor Cons and continues with the infinite list
construction. Therefore, this is a lazy terminating program. The output that is
generated by this function is similar to the output of the function from shown in
example 2.1, i.e., for the start term h m n, the infinite list of natural numbers
starting at n is generated.

Figure 9.2: Termination Graph for h m n, where there is not a ParSplit-node
in every cycle

9.3. EXAMPLES FOR LAZY-TERMINATION 91

When looking at the Termination Graph with the start term h m n, shown
in figure 9.2, we see that not every cycle contains a ParSplit-node with a con-
structor symbol. Therefore, the approach presented in [PSS97] cannot prove this
start term to be lazy terminating.

In our approach, the start term lazyTerminating x (h m n) must be shown
H-terminating. This is reduced to proving finiteness of the following two DP
problems:

P = { new asAs(S(x0), S(n0), vx3) → new asAs(x0, n0, vx3) }
R = ∅

and

P = { new lT (S(x0), Z, n) → new lT (x0, n, S(n))
new lT (S(x0), S(m0), n) → new lT (S(x0),m0, n) }

R = ∅

Here, the first DP problem corresponds to the lazy termination analysis of
the generated argument n of the list constructor Cons. The second DP problem
is the more interesting DP problem, where the function h is contained in. Here,
we see that for the argument Z, we have a decrease in the first argument, i.e., we
have found a constructor head. In the second Dependency Pair, this argument
remains unchanged. However, we see that the argument S(m0) is decremented to
m0. This corresponds to the second rule for the function h, where we decrement
its first argument until we reach Z. Finiteness of these DP problems can be
shown by the Size-Change processor [TG05], for example.

As we have seen in this chapter, there are start terms that contribute to a
finite computation, although these terms are not terminating. Such a function
can be used as an argument of another function, to generate a continuous stream
of items. However, non-termination is often not desired and is considered an
error. Therefore, we will have a look at how we can prove start terms to be
non-terminating in the next chapter.

Chapter 10

Non-Termination Analysis
for Haskell

As it was said in the introduction, a programmer often makes small mistakes.
In order to assist the programmer in finding such mistakes, it is of great help to
identify programs that are definitely not terminating by giving a counterexam-
ple. If this is the case, there exists an infinite reduction sequence w.r.t. →H, or
a result having a functional type can be provided with enough H-terminating
arguments such that an infinite reduction sequence exists. So the definition
of non-H-terminating terms is the inverse of H-terminating terms, which was
introduced in definition 2.7.

Definition 10.1 (Non-H-Termination). The set of non-H-terminating ground
terms t is defined as the largest set, such that:

(a) t starts an infinite reduction t →H . . .,

(b) if t →∗
H (f t1 . . . tn) for a defined function symbol f , n < arity(f), and

the term t′ is H-terminating, then (f t1 . . . tn t′) is non-H-terminating, or

(c) if t →∗
H (C t1 . . . tn) for a constructor C, then a ti is non-H-terminating.

A term t is non-H-terminating, iff tσ is non-H-terminating for a substitution
σ with H-terminating ground terms of correct types. Such a substitution may
introduce new defined functions with arbitrary defining equations.

Based on this definition of non-H-terminating terms, this chapter describes
a method to automatically prove non-H-termination of start terms. First, we
motivate the choice for allowing evaluations inside arguments of a constructor
in an arbitrary order, instead of a left-to-right fashion. Second, we will take a
look at the Termination Graphs and determine which DP paths can be used
for Non-Termination analysis. Thereafter, we will solve the problem that class
constraints can restrict types in such a way, that no type exists that could start
an infinite evaluation of a ground term, which is required in definition 10.1.
Last, we show that an infinite chain in one of these restricted DP problems
implies a non-H-terminating ground instance of our start term.

93

94 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

10.1 Motivation for allowing evaluation inside
any argument of a constructor

As could be seen in the definition of non-H-terminating terms, it is not required
to evaluate terms from left to right. Why this was chosen shall be illustrated in
the following example.

Example 10.2 (Non-Termination based on skipping evaluation position). Con-
sider the following Haskell program:

data D = Z | S D | C D D

f (S x) (S y) = C (f x (S (S y))) (f (S (S x)) y)

and the start term f x y.
When data D is extended with deriving Show, then the evaluation of any

instance of the start term will terminate with an error, as the derived instance
of Show will evaluate the subterms of C from left to right, leading to a term where
no S occurs on the first position of f anymore. However, the function f is not
H-terminating, as shown in the following reduction sequence:

t = f (S (S Z)) (S Z)
→H (π = ε) C (f (S Z) (S (S Z))) (f (S (S Z)) Z)
→H (π = 1) C (C (f Z (S (S (S Z)))) (f (S (S Z)) (S Z))︸ ︷︷ ︸

=t

) . . .

As →H does not require the leftmost position to be evaluated, the term t could
be evaluated infinitely often.

The reasoning, why evaluation on arbitrary positions is allowed, is that one
could always generate a corresponding instance of Show. For the above example,
one possible instance would be the following:

instance Show D where
show Z = "Z"
show (S x) = "S" ++ show x
show (C x y) = "C" ++ show’ x ++ show’ y

where show’ Z = "Z"
show’ (S x) = "S" ++ show x
show’ (C x y) = "C" ++ show y ++ show x

When the start term t would be evaluated with this instance of Show, the
evaluation of a Haskell interpreter would also loop infinitely often, outputting
an infinite sequence of “C”s.

As can be seen in the above example, the instance of the class Show de-
termines whether a term has an infinite evaluation sequence. An instance for
Show that always finds infinite sequences which result from skipping evaluation
positions can be constructed for every start term with a corresponding Haskell
program. This is shown in the following lemma.

Lemma 10.3 (Show instances for Non-Termination). For every Haskell Pro-
gram HP and every start term t, there exists a function showHP , such that the
evaluation of showHP t will be infinite if there exists an infinite evaluation of
the start term t w.r.t. →H and that is finite if t is H-terminating.

10.2. TERMINATION GRAPH FOR NON-TERMINATION 95

Proof. Let HP be a Haskell program, and let TM be the Turing Machine repre-
sentation of this program. TM always exists, since Haskell is a Turing-complete
language.

TM can be encoded in Haskell again, forming a Haskell program which will
be denoted by HPTM . The program HPTM is then imported into the original
program HP , and the showHP function is generated as follows:

First, the term passed as argument is converted to the internal representation
used in HPTM . On this representation, the evaluation is then performed. When-
ever an error-term is reached as an argument of a constructor, the showHP

function replaces this term by the representation of a new constructor Error
and continues the evaluation.

If the term t is H-terminating, then it holds that after a finite number of
steps a normal form is reached. This normal form must also be reached in the
program HPTM . Therefore, none of the rules of HPTM are applicable anymore
and hence we have that showHP t has only a finite evaluation.

The other case is shown indirectly. Assume that all reduction sequences of
a start term t w.r.t. →H are finite, but the evaluation of showHP t is infinite.

This implies the existence of a normal form t ↓H of t w.r.t. →H. This is
due to the fact that →H is non-overlapping, as always the first rule is applied
and the two cases in the definition of →H are divided into whether the term
starts with a defined function symbol or a constructor. Therefore, the Turing
Machine representation must reach its representation of t ↓H, which must also
be a normal form in the program HPTM . This contradicts the assumption that
the evaluation of showHP t is infinite.

This means that evaluation could occur on any position of a constructor,
which is why the definition of →H was chosen in the presented way. Please note
that the Show class was only chosen for motivation, since there are predefined
instances of Show for most predefined data types, which have a fixed order of
evaluation. But for such terms, a context of the above form could still allow for
an infinite evaluation.

10.2 Termination Graph for Non-Termination

The problem with Non-Termination Analysis for Haskell is that due to the lazy
evaluation strategy, terms that are not terminating when called directly, are ter-
minating when put in the right context. This can be seen in example 2.1 for the
start term take u (from m). Here, the subterm from m is not H-terminating,
but the function take only considers a finite prefix of the generated infinite list.

In order to handle this problem, only so called “Top-Cycles” are considered.
Intuitively, these are cycles in a Termination Graph which are not inside other
defined functions. Therefore, these terms will always be evaluated completely,
i.e., there is no context around them that might stop their evaluation.

Definition 10.4 (Top-Cycle). Let TG be a Termination Graph for a start
term t.

A cycle G′ in TG is called a Top-Cycle, if there exists a path p from t to
a node on G′, there is no node s in G′ such that s ∈ UTG, for every child
s′ of an Ins-node in G′ it holds that s′ 6∈ PUTG, every path in G′ does not

96 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

traverse children of an Ins-node, except for the instantiation edge, and there is
no Ins-node in p.

A Top-Cycle never traverses the subterm children of Ins-nodes. This is,
because it is not known whether a subterm will be evaluated. When we analyze
H-termination, then we consider the worst case, i.e., we assume that this term
has to be evaluated. This was used in section 7.1, where it allowed us to switch
to minimal chains. However, for Non-Termination analysis the worst case is
that this is an unneeded argument. Thus, we cannot deduce from a non-H-
terminating argument that the start term was non-H-terminating.

As can be seen in the definition of Top-Cycles, there must not be a child
of an Ins-node that is a predecessor of a ParSplit-node with variable head.
This is, because otherwise we would have a free variable on a right-hand side
of a Dependency Pair, which would have to be filtered away. But filtering is
not complete, i.e., it does not guarantee that an infinite chain in the filtered
DP problem is also an infinite chain in the unfiltered DP problem. An example
for this is given below.

Example 10.5 (Filtering introduces infinite chains). Consider the following
Haskell program with the start term f g x.

data Nats = Z | S Nats

f :: (Nats -> Nats) -> Nats -> Bool
f g (S x) = True
f g Z = f g (S (g Z))

Figure 10.1: Termination Graph for f g x, showing a ParSplit-node with
variable head as child of an Ins-node

As we can see in the Termination Graph for this start term, which is shown
in figure 10.1, the term g Z corresponds to a ParSplit-node with variable head

10.2. TERMINATION GRAPH FOR NON-TERMINATION 97

in the Termination Graph. Therefore, a fresh variable would be introduced in
the Dependency Pair, which would look as follows:

new f(g, Z) → new f(g, y)

If we filter away the second argument of the function new f , then we have
an infinite chain. However, the original program is terminating, since the con-
structor S will be introduced on the second argument of f, regardless of the result
of g Z, making the first rule of f applicable.

Furthermore, no Ins-node must exist on the path leading to a Top-Cycle.
This rules out generalizations, where the instantiated term was terminating, but
there is a case in the generalized term such that it is non-terminating.

Example 10.6 (No Ins-node must exist on the path to a Top-Cycle). We want
to consider the start term le1 Z for the following Haskell program:

le1 (S Z) = True
le1 x = le1 (S x)

Figure 10.2: Termination Graph for start term le1 Z, illustrating why no Ins-
node must be on the path to a non-terminating SCC

The Termination Graph for this example is shown in figure 10.2. In this
Termination Graph, an instantiation edge is drawn from le1 Z to the term
le1 x. If we called the cycle from le1 x to le1 (S (S (S x00))) labelled
with [x/S(S(x00))] a Top-Cycle, then an infinite chain exists in the created

98 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

DP problem which is shown below, although the start term was H-terminating.

P = { new le1(Z) → new le1(S(Z))
new le1(S(S(x00))) → new le1(S(S(S(x00)))) }

R = ∅
For the shown DP problem, the following infinite chain exists:

new le1(S(S(Z))) →P new le1(S(S(S(Z))))
→P new le1(S(S(S(S(Z)))))
→P . . .

The problem is that the Ins-node in the path from the start term to the
term le1 x corresponds to a generalization. In the start-term it was fixed that
the evaluation must start with the argument Z. This information was dropped
during the introduction of the new node le1 x, thus also terms with more than
one S-constructor are considered.

The restriction to paths without Ins-nodes does not apply to DP paths on
cycles. This is, because all information of an Ins-node will be encoded into
the right-hand side of a Dependency Pair. Thus, every following Dependency
Pair in a chain must fulfill the requirements imposed by this right-hand side;
therefore, the information is carried over to the next Dependency Pair.

Another restriction for Top-Cycles is that no ParSplit-nodes with variable
head must occur. This is due to the referential transparency required by Haskell
functions and is shown by a counterexample.

Example 10.7 (Counterexample when ParSplit-nodes with variable head are
allowed). For the following Haskell program, the start term f x y shall be an-
alyzed.

f :: Bool -> (Bool -> Bool -> Bool) -> Bool
f False h = h (f True h) (error [])
f True h = h (error []) (f False h)

As can be seen, the call to the function argument h of f is called with an
error-term on the second position in the first case, whereas the error-term
occurs on the first position in the second case.

If one disregards the error, the created DP problem would be

P = { new f(False, h) → new f(True, h)
new f(True, h) → new f(False, h) }

R = ∅
This is an infinite DP problem, since an infinite chain exists.
When a ground start term is entered, the argument h must be set to a single

function. Thus, in order to require an infinite evaluation, the function that is
inserted for h must demand a constructor on the second argument, as this is
required to get the recursive call from f False h to f True h. On the other
hand, the function h must evaluate its first argument, since this is required for
the other recursive call of f. Therefore, since this Haskell function is fixed, it
must evaluate an error-term eventually. Thus, there exists no infinite Haskell
evaluation sequence, since every evaluation will stop with an error.

Please note that ParSplit-nodes with variable head are allowed on the path
leading to an SCC. This is, because this path has to be evaluated only once;
therefore, an instance that does not run into error-cases exists.

10.3. BASIC INSTANCES AND DP PROBLEMS 99

10.3 Basic Instances and DP problems

In the definition of non-H-terminating terms, a ground instance of a start term
containing variables is required, such that it is non-H-terminating. Thus, we
also face the problem to decide whether for a given start term a ground instance
exists. This is different in the case of termination analysis, where we would show
the absence of infinite reductions for start terms that actually do not exist. An
example for this is given below.

Example 10.8 (Non-existent infinite reduction). Non-termination of the fol-
lowing Haskell program shall be analyzed for the start term f x.

class A a where
f :: a -> Bool

class B a where

instance B a => A [a] where
f xs = f xs

instance A Bool where
f x = x

For the given start term, the class constraint A a exists, since the class
member f is being used. Obviously, an infinite evaluation exists for the list
instance of the class A. But no ground instance of the start term exists, since
then an instance of the class B would have to exist for the elements of the list.

The variables inside a term stand for arbitrary H-terminating terms, by
definition of (non-)H-termination. Because of polymorphic types in Haskell,
these do not impose a problem, since one can always instantiate any term with
undefined. For type variables without constraints, there is no problem, since
these type variables may be instantiated with any type. However, when class
constraints exist for a type variable, then a type must be used in the start term,
such that all class constraints are satisfied. Therefore, we have to guarantee the
existence of a basic instance, such that it is non-H-terminating. Please note that
this was already implicit in the definition of non-H-termination, as we required
the existence of a ground substitution with correct types, which means that all
class constraints can be satisfied. This is due to the fact that the Haskell type
checker does not allow unresolved constraints in start terms.

Example 10.9 (Basic Instances). We consider the classes and instances pre-
sented in example 2.2.

The class constraint Addition (List Nats) is a basic instance, because
we have the instance Addition Nats which enables us to build the instance
Addition (List Nats), as the requirement for the list instance that the type
of the elements must also be in the type class Addition is met.

For the class constraint Addition a it holds that this is not a basic instance,
because it cannot be decided. Therefore, it is not allowed to use such a constraint
when entering a term into a Haskell interpreter. However, this class constraint
has a basic instance, if we replace the type variable a by the type Nats, for
example.

100 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

When we consider the class constraint Multiplication a, then this is nei-
ther a basic instance, nor does it have a basic instance. This holds, because
there are no instances for this type class in the program.

To formally define a basic instance, we have to check whether all class con-
straints can be resolved. This check is performed by the function reduce, which
was introduced in definition 4.2.

Definition 10.10 (Basic Instance). For a Haskell program HP , a term cs⇒t
is a basic instance, iff reduce(cs) = ∅.

A term cs⇒t is said to have a basic instance, iff a type substitution σ exists,
such that reduce(csσ) = ∅.

A basic instance can always be instantiated further to a ground instance,
since every subterm has either a fixed- or an unrestricted type. Therefore, such
terms can be replaced by as many constructors as needed (for fixed types), and
then all further subterms thereof can be replaced by, e.g., undefined.

The existence of basic instances that allow infinite reductions is checked by
two means. First, it is ensured for every Top-Cycle that it is reachable from
a basic instance of the start term. Then, the instance information for every
DP path is encoded into the terms that are created. Thus, we distinguish
between the restricted type variables that occur inside an SCC that was built
from Top-Cycles and those which do not occur in the current SCC. These will
be called dependent and independent type constraints, respectively.

Example 10.11 (Dependent and Independent Class Constraints). The follow-
ing Haskell program shall be considered for the start term f x (g y).

data Nats = Z | S Nats

class A a
class B a

instance B Nats

f :: A a => a -> b -> b
f x y = y

g :: B a => a -> a
g x = g x

For the given start term, we construct the Termination Graph shown in
figure 10.3. As can be seen, we have a Top-Cycle in which the term g y loops
back to itself. In this Top-Cycle we have the class constraint B b, which is
therefore called a dependent class constraint. This class constraint has a basic
instance, because of the instance B Nats.

However, the node containing the start term has two class constraints: On
the one hand the dependent class constraint B b and on the other hand the class
constraint A a, which is dropped due to the implementation of the function f.
This latter class constraint A a is called an independent class constraint. This
is, because it is not linked to the SCC in any way. It should be noted that this
class constraint does not have a basic instance, because no instances exist for

10.3. BASIC INSTANCES AND DP PROBLEMS 101

Figure 10.3: Termination Graph for f x (g y) showing dependent and inde-
pendent class constraints

the class A. Therefore, the given start term does not have any instances and
hence it is H-terminating.

Next, the notion of dependent and independent class constraints shall be
defined formally.

Definition 10.12 (Dependent and Independent Class Constraints). Let TG be
a Termination Graph, let G′ be the subgraph of all Top-Cycles for an SCC of
TG, and let csG′ be the set of class constraints that occur in G′.

We say that a class constraint C ρ is independent of G′, iff V(ρ)∩V(csG′) =
∅. Otherwise, C ρ is called a dependent class constraint.

For the independent class constraints, any basic instance of these class con-
straints can be used, since they are not used recursively. Thus, a simple search
for a basic instance suffices. For the dependent class constraints, it is necessary
to also consider the recursive structure in the SCC, therefore the class con-
straints are encoded into the DP problem, as stated above. Here, we do not
only have to consider the class constraints that are present at the Ins-node, but
we must also consider all dependent class constraints on a DP path. Why this
is the case is illustrated in the example below.

Example 10.13 (Collection of class constraints). We want to analyze the start
term f x y for the following Haskell program.

data Nats = Z | S Nats
data A a => D a = J | W a

class A a
instance A Nats

f :: D a -> D b -> Nats
f J y = Z
f x y = f y y

For this start term, the Termination Graph shown in figure 10.4 is built
which contains exactly one DP Path from node A to node E. For this DP path,

102 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

Figure 10.4: Termination Graph for f x y, showing the collection of class con-
straints

we see that at node C a new class constraint is introduced. This happens, be-
cause this class constraint is bound to the type variable a in the definition of
data constructor W. When now the Eval-step in node C results in node E, this
class constraint does no longer exist, since in node E the type a does not occur
anymore.

When now the class constraints are collected, this class constraint must be
considered. This is, because in order to run into this case, a ground term with
the data constructor W must be used. Then, the class constraint A a of this data
constructor must also be fulfilled.

To collect the dependent constraints of a path, the function collectCCs is
used. This function is defined relative to a subgraph G of TG which deter-
mines which class constraints shall be collected, i.e., which class constraints are
currently dependent class constraints.

Definition 10.14 (collectCCs). Let TG be a Termination Graph, let t′ to t be
a path in TG not crossing instantiation edges, and let G be a subgraph of TG.

We define the set collectCCsG(t′, t) recursively along the path, by looking at
a current node css⇒s, where we start with css⇒s = t′.

If we have css⇒s = t, then collectCCsG(css⇒s, t) = css.
Otherwise, we perform case distinction based on the expansion rule applied

to the current node css⇒s:

Eval : If the child of the current node css⇒s is s′, then collectCCsG(css⇒s, t) =
css ∪ collectCCsG(s′, t).

VarExp: In case css⇒s is a VarExp-node with the child css⇒(s x), then we
have collectCCsG(css⇒s, t) = collectCCsG(css⇒(s x), t).

Case: For a Case-node, only the child s′ is considered further which is on the
path from css⇒s to t, i.e., collectCCsG(css⇒s, t) = collectCCsG(s′, t).

TyCase: When css⇒s is a TyCase-node, then those class constraints that con-
tain the type variable a on which the type case was performed are re-
moved. Let s′ be the child that lies on the path from css⇒s to t. Then

10.3. BASIC INSTANCES AND DP PROBLEMS 103

collectCCsG(css⇒s, t) = collectCCsG(s′, t). Here, the class constraints are
removed in the child node s′, due to the construction of the Termination
Graph.

ParSplit : At a ParSplit-node, only those class constraints are collected, where
the children are in G. Let {cs1⇒s1, . . . , csn⇒sn} ⊆ ch(css⇒s) be the chil-
dren of css⇒s that are in G, and let csj⇒sj be the child on the path from
css⇒s to t. Then collectCCsG(css⇒s, t) =

⋃
1≤i≤n

csi∪collectCCsG(csj⇒sj , t).

Ins: Since css⇒s 6= t, there must be a child of the Ins-node not connected via
the instantiation edge, such that it is on the path to t, since the path does
not contain instantiation edges. Let s′ be this child on the path to t, then
collectCCsG(css⇒s, t) = collectCCsG(s′, t).

For the collected class constraints, it holds that a basic instance thereof can
propagated backwards along paths in a Termination Graph. For this to work,
the independent class constraints that are dropped at ParSplit-nodes must
also have a basic instance.

Lemma 10.15 (Basic instances exist along paths). Let TG be a Termination
Graph, let G be a subgraph of TG, and let css′⇒s′ to css⇒s be a path in TG
which does not traverse instantiation edges, where a basic instance exists for
collectCCsG(css′⇒s′, css⇒s) and for all independent constraints of ParSplit-
nodes.

Then a basic instance exists for css′⇒s′.

Proof. The lemma is shown inductively over the length of the path from s′ to s.
This is a well-founded order, since by disallowing instantiation edges, all paths
in TG have only finite length.

If the path from css′⇒s′ to css⇒s has length zero, then a basic instance for
css′⇒s′ exists by requirements on css⇒s.

Otherwise, a predecessor cst⇒t of css⇒s exists. Case analysis is performed
based on the expansion rule applied to cst⇒t:

Eval : Since at an Eval -node, all class constraints of the Eval -node are pushed
downwards, these class constraints have a basic instance. Formally, this is
because cst ⊆ collectCCsG(css′⇒s′, css⇒s) and a basic instance exists for
css. Thus, for the path from css′⇒s′ to cst⇒t, the claim inductively holds,
since this path is shorter than the path from css′⇒s′ to css⇒s.

Case: For a Case-node, cst ⊆ css ⊆ collectCCsG(css′⇒s′, css⇒s) holds. Hence,
a basic instance exists for cst⇒t. Based on this basic instance, the induc-
tion hypothesis proves the claim.

VarExp: If cst⇒t is a VarExp-node, then its only child is cst⇒(t x) = css⇒s for
a fresh variable x. Therefore, a basic instance exists for cst and therefore
also for css′ .

Ins: Because the path does not traverse instantiation edges, the child css⇒s
must be a subterm of the node cst⇒t. Because css has a basic instance,
and because cst ⊆ css ⊆ collectCCsG(css′⇒s′, css⇒s), we also have a basic
instance of cst and thus inductively also of css′ .

104 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

TyCase: When cst⇒t is a TyCase-node, then we have that for the child node
css⇒s = (cst⇒t)δ on the path, the class constraints of this node have the
form css = (cst \ {C1 ρ1[a], . . . , Cm ρm[a]}) ∪ {Cm+1 ρm+1, . . . , Cn ρn},
where δ = [a/(T a1 . . . ak)], a, a1, . . . , ak are type variables, T is a type
constructor, C1 ρ1, . . . , Cn ρn are class constraints, and m ≤ n. This
especially means that for the constraints {Cm+1 ρm+1, . . . , Cn ρn} basic
instances exist. The constraints {C1 ρ1[a], . . . , Cm ρm[a]} could only be
removed because of instances for the types ρi[a/(T a1 . . . ak)]. Since all
their preconditions are contained in {Cm+1 ρm+1, . . . , Cn ρn}, basic in-
stances also exist for {C1 ρ1[a], . . . , Cm ρm[a]}, which inductively proves
the claim, since we have a shorter path.

ParSplit : In case cst⇒t is a ParSplit-node, we have to distinguish between
the dependent and independent class constraints of this node. Let cst =
{C1 ρ1, . . . , Cm ρm} ∪ {Cm+1 ρm+1, . . . , Cn ρn}, where m ≤ n, for all
1 ≤ i ≤ m we have that Ci ρi is an independent class constraint, and for
all m < i ≤ n, Ci ρi is a dependent class constraint.

For the independent class constraints, a basic instance exists by assump-
tion, i.e., a substitution σ′ exists, such that {C1 ρ1, . . . , Cm ρm}σ′ is a
basic instance.

For the dependent class constraints, we have {Cm+1 ρm+1, . . . , Cn ρn} ⊆
css ⊆ collectCCsG(css′⇒s′, css⇒s). Thus, the induction hypothesis gives us
the existence of a substitution σ′′, such that {Cm+1 ρm+1, . . . , Cn ρn}σ′′
is a basic instance. Since the type variables of the dependent- and the
type variables of the independent class constraints are disjoint, for the
substitution σ = σ′σ′′ it holds that cstσ is a basic instance. Therefore,
the claim inductively holds, since the path to cst⇒t is shorter.

Using the collected class constraints, we can build the DP problems that
will be used for the Non-Termination analysis of Haskell. For these, we want
the property that an infinite chain corresponds to an infinite Haskell evaluation
of a ground instance of the start term, which is why our idea is to encode this
property into the DP problems. In order to be able to resolve class constraints,
rules for the reduction of class constraints must also be added. Since we do
not want to add rules for every instance in the program, we define the usable
instances as the set of instances that might possibly be used.

Definition 10.16 (Usable Instances). Let HP be a Haskell program, let cs be
a set of class constraints.

The set usableIns(cs) of usable instances for cs is defined as the smallest
set such that

• For every instance I = (C1 ai1, . . ., Cm aim) => C (T a1 . . . an) in
HP , where a class constraint C ρ exists in cs, we have I ∈ usableIns(cs).

• If (C1 ai1, . . ., Cm aim) => C (T a1 . . . an) ∈ usableIns(cs),
then usableIns({Cj aij

}) ⊆ usableIns(cs) for every 1 ≤ j ≤ m.

10.3. BASIC INSTANCES AND DP PROBLEMS 105

So for example, if we regard the example 2.2 and the set of class con-
straints cs1 = {Multiplication a}, we have that usableIns(cs1) = ∅, because
no instance for Multiplication exists in the example program. However, for
the set of class constraints cs2 = {Addition a}, we have usableIns(cs2) =
{Addition Nats, Addition a => Addition (List a)}, as these are the in-
stances that exist for Addition, and the only further class constraint is for
the class Addition, whose instances are already included.

To encode the check for existence of basic instances for a set of class con-
straints into the terms, the function introCCs is defined. For a set of class
constraints, it appends a term starting with the defined symbol ccCheck and
having a list of these class constraints as arguments to the defined function
symbols in a given term. The idea is to define the rules for ccCheck in such a
way that they represent the reduction of class constraints.

Definition 10.17 (introCCs). Let cs = {C1 ρ1, . . . , Cm ρm} be a set of class
constraints, let t be a term.

The term introCCscs(t) is defined as:

• If t = f(t1, . . . , tn), where f is a defined symbol and arity(f) = n, then

introCCscs(t) = f(introCCscs(t1), . . . , introCCscs(tn),
ccCheck([C1(ρ1), . . . , Cm(ρm)]))

• If t = c(t1, . . . , tn), where c is a constructor or a variable, then

introCCscs(t) = c(introCCscs(t1), . . . , introCCscs(tn))

Please note that the list representation above is only used for readability.
What is really to be produced is a term containing only the constructors : and
[]. Another thing to note is that the types ρ1, . . . , ρm must be represented in
applicative form, as already discussed in chapter 6.

The following example shall illustrate, how introCCs adds class constraints
to the defined symbols in the resulting DP problems.

Example 10.18 (introCCs). Consider example 2.2 again. We want to consider
the case, where the set of class constraints cs = {Addition a} is to be inserted
into the term Cons (plus x y) (plus xs ys), which appears on the right-
hand side of the instance for lists. Let the type variable be a, then the term with
the introduced type variables is constructed as shown in the following.

introCCscs(Cons(plus(x, y, a), plus(xs, ys, a)))
= Cons(introCCscs(plus(x, y, a)), introCCscs(plus(xs, ys, a)))
= Cons(

plus(x, y, a, ccCheck(Addition(a) : [])),
plus(xs, ys, a, ccCheck(Addition(a) : []))

)

The idea is that before a chain can be built using the result of this rule
application, one has to show first that in the above example, an instance of
Addition a exists. How this is guaranteed is shown later, when the DP prob-
lems for Non-Termination analysis are defined.

106 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

The above example shows that we have to provide means to check whether
a set of class constraints has a basic instance. This is, because there might
be rules that allow for a chain, but the paths these rules represent cannot be
entered, because the corresponding instances do not exist. Therefore, we first
define the function that reads rules suitable for Non-Termination analysis.

Here, also the rules for ccCheck are defined. These mimic the reduction of
class constraints based on the instance definitions of the usable instances.

Definition 10.19 (Rules rlNT for Non-Termination analysis). Let TG be a
Termination Graph, let s be a node in it.

We define rlNT (s) to be the smallest set such that

• If f(s1, . . . , sn)σ1 . . . σm → r ∈ rl(s) and cs = collectCCsTG(t, r), then

f(s1, . . . , sn, [])σ1 . . . σm → introCCscs(r) ∈ rlNT (s),

where for every ParSplit-node u on the path from f(s1, . . . , sn) to r a
basic instance of the independent class constraints of u exists,

• If q ∈ con(s), then rlNT (q) ⊆ rlNT (s),

• ccCheck([]) → [] ∈ rlNT (s), and

• If for an instance I = (C1 ai1, . . ., Cm aim) => C (T a1 . . . an), it
holds that I ∈ usableIns(collectCCsTG(t, r)) for a rule t → r ∈ rl(s), then

ccCheck(C(T (a1, . . . , an)) :ccs) → ccCheck([C1(ai1), . . . , Cm(aim)]++ccs)
∈ rlNT (s).

Here again, the notation for the lists and the append operator are only used
to increase readability. Really, the terms are built using the constructors : and
[] only, as well.

An example shall demonstrate, how the introduced terms starting with
ccCheck guarantee the existence of basic instances for those rules.

Example 10.20 (ccCheck). Consider again example 2.2, containing the rule
plus (Cons x xs) (Cons y ys) = Cons (plus x y) (plus xs ys).

For this rule, we have the collected class constraints cs = {Addition a}
which have usable instances for the data type Nats and for the data type List a.
Thus, we would have the following rules for ccCheck:

ccCheck([]) → []
ccCheck(Addition(Nats) : ccs) → ccCheck(ccs)
ccCheck(Addition(app(List, a)) : ccs) → ccCheck(Addition(a) : ccs)

If we have a ground term, where the type of a is instantiated with List Nats,
then the subterm ccCheck(Addition(app(List,Nats)) : []) would be contained.
The above rules can reduce this term to the empty list, which means that a basic
instance exists for this class constraint.

ccCheck(Addition(app(List,Nats)) : []) → ccCheck(Addition(Nats) : [])
→ ccCheck([])
→ []

10.3. BASIC INSTANCES AND DP PROBLEMS 107

The above definition of the rules guarantees that a rule can only be evaluated,
if the corresponding instance exists. For this to work also for the next rule
that might be applicable, it must be the case that any term starting with the
defined function ccCheck is evaluated as far as possible. How this is achieved
can be seen in the next definition, when the DP problems containing these
rules are constructed. Furthermore, these must also ensure that the dependent
class constraints on their DP paths exist. This is done by encoding the class
constraints into the Dependency Pairs, too.

Definition 10.21 (DP problems dpRenNT
G′ for Non-Termination analysis). Let

TG be a Termination Graph, let G′ be the subgraph of all Top-Cycles of a SCC
in TG.

We define dpRenNT
G′ = (P,Q,R, a), where P and R are the smallest sets,

such that:

• If a DP path exists from s to t in G′ labelled with substitutions σ1, . . . , σm,
where bRTG(s) = f(s1, . . . , sn), bRTG(ev(t)) = g(t1, . . . , tn), and where
collectCCsG′(s, t) = cs, then

f(s1, . . . , sn, [])σ1 . . . σm → introCCscs(g(t1, . . . , tn)) ∈ P,

where for every ParSplit-node on the DP path, a basic instance of the
independent class constraints exists,

• rlNT (q) ⊆ R, for all q ∈ con(t1) ∪ . . . ∪ con(tn),

• If for an instance I = (C1 ai1, . . ., Cm aim
) => C (T a1 . . . an), it

holds that I ∈ usableIns(collectCCsG′(s, t)) for a DP path from s to t in
G′, then

ccCheck(C(T (a1, . . . , an)) :ccs) → ccCheck([C1(ai1), . . . , Cm(aim)]++ccs)
∈ R.

Here, the list representation above is again only used to ease readability.
Really, the representation with the constructors : and [] is built.

In the returned DP problem, the set Q is set to be {ccCheck(x) → . . .},
thereby forcing evaluation of ccCheck to a normal form.

By including the defined function ccCheck in the set Q, we have that for
every reduction, it must first be checked whether the class constraints are ful-
filled. This is, because every term starting with ccCheck must be reduced to the
empty list in order to not be reducible w.r.t. Q. Thereby, only such reductions
are valid, where a basic instance of the class constraints exists. Why this is the
case shall be illustrated in the following example.

Example 10.22 (Why Q contains ccCheck(x)). We want to analyze non-H-
termination of the start term h x y z for the following Haskell program:

class A a
data Nats = Z | S Nats
data A a => D a = J | W a

g :: D a -> D b -> Nats
g J y = Z
g x y = S (g y y)

108 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

h :: Nats -> D a -> D b -> Nats
h (S n) y z = h (g y z) y z

Figure 10.5: Termination Graph for start term h x y z, which shows why Q
must contain ccCheck(x)

From the Termination Graph for this start term, which is shown in fig-
ure 10.5, the following DP problem for Non-Termination analysis is generated.

P = {
new h(S(n), y, z, a, b, []) → new h(new g(y, z, a, b, []), y, z, [])

}

R = {
new g(J, y, a, b, []) → Z
new g(W (x0), y, a, b, []) → S(new g(y, y, b, b, ccCheck(A(a) : []))
ccCheck([]) → []

}

10.3. BASIC INSTANCES AND DP PROBLEMS 109

In the above DP problem, there are no further rules for ccCheck since no
instances of the class A exist. But if Q = ∅, then an infinite chain could be built:

new h(S(n),W (y), z, a, b, [])
→P new h(new g(W (y), z, a, b, []),W (y), z, a, b, [])
→R new h(S(new g(z, z, b, b, ccCheck(A(a) : []))),W (y), z, a, b, [])
→P new h(new g(W (y), z, a, b, []),W (y), z, a, b, [])
→R . . .

As can be seen, the term in the second line and the last term are equal, which
then results in an infinite chain.

This infinite chain only exists, because the reduction of g needs to be done
only once, which directly generates the required constructor S. However, this
rule cannot be applied, since the class constraint (A a) of the constructor W
cannot be fulfilled. Hence, this class constraint must be reduced fully first, which
is why Q contains the left-hand side ccCheck(x). Then, the evaluation of the
outer redex starting with new h is blocked until the term ccCheck(A(a) : []) could
be evaluated further to a term not reducible w.r.t. Q.

For a set of class constraints cs, we will write ccCheck(cs) in the following,
where really the list representation as shown in definition 10.17 is meant. Then
a reduction of ccCheck(cs) to the empty list constructor [] shows that a basic
instance exists for the class constraints cs, which is shown in the following
lemma.

Lemma 10.23 (ccCheck implies existence of a basic instance). Let TG be a
Termination Graph, let G′ be an SCC in it consisting only of Top-Cycles, let
dpRenNT

G′ = (P,Q,R, a), and let cs be a set of class constraints.
If a reduction ccCheck(cs) →∗

R [] exists, then cs is a basic instance.

Proof. Assume that cs is not a basic instance, but ccCheck(cs) →∗
R [].

Since cs is not a basic instance, there must be a class constraint C ρ in
the reduce-steps of cs, such that no instance exists for it, i.e., for all instances
cx => C (T a1 . . . an) in the Haskell program, (T a1 . . . an) does not match ρ.
By construction, no rule can match the term ccCheck(C(ρ) : ccs), i.e. this is a
normal form. Thus, since R is non-overlapping, the reduction ccCheck(cs) →∗

R
[] cannot exist, which contradicts the assumption.

These reductions are part of any chain, since every term starting with
ccCheck must first be reduced to the empty list. Thus, we will now show
that the existence of a chain ensures the existence of basic instances for all used
terms.

Lemma 10.24 (Chains imply existence of basic instances). Let TG be a Ter-
mination Graph, let G′ be an SCC in TG consisting only of Top-Cycles, let
dpRenNT

G′ = (P,Q,R, a) be the DP problem created from G′, and let basic in-
stances exist for all independent class constraints of G′, and for all independent
class constraints that occur on rule paths used to construct R.

If s1 → t1, s2 → t2 ∈ P is a chain, then a substitution σ exists, such that
s1σ is a basic instance.

110 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

Proof. Since s1 → t1, s2 → t2 is a chain, it must hold that substitutions σ1 and
σ2 exist, such that t1σ1 →∗

R s2σ2, i.e., especially for the subterm ccCheck(cst1)C
t1, it must hold that ccCheck(cst1σ1) →∗

R [], and therefore, by lemma 10.23, the
class constraints of t1σ1 are a basic instance.

Furthermore, for every proper subterm t′ = g(u1, . . . uk, ccCheck(cst′)) of t1,
where g is a defined symbol, it must hold that ccCheck(cst′)σ1 →∗

R [], because
by having Q = {ccCheck(x) → . . .}, a chain only exists if the defined function
ccCheck can be removed. Thus, for every subterm t′, t′σ1 is a basic instance by
lemma 10.23.

Especially, all independent class constraints on the rule paths used to re-
duce t′ have a basic instance. Thus, for every term used on these rule paths,
a basic instance exists by lemma 10.15, since every right-hand side of a rule
contains a term starting with ccCheck, which must be reduced first due to
Q = {ccCheck(x) → . . .}. Therefore, lemma 10.23 guarantees the existence of
a basic instance of these right-hand sides, and thus also for the left-hand sides
of those rules.

Putting this together, we get that t1σ1 is a basic instance, since for every
subterm and the used rules, a basic instance exists.

Since the DP path from s1 to t1 does not traverse instantiation edges,
lemma 10.15 gives us the existence of a basic instance of s1, i.e., a substitu-
tion σ exists, such that s1σ is a basic instance.

From the first term of a chain, a basic instance of the start term can be
found in a similar manner. This is done again by following the path from the
start node to the first node from which the first Dependency Pair was read.
The difference is, that now also for Eval -nodes it has to be made sure that a
corresponding basic instance exists.

Lemma 10.25 (Existence of a chain implies existence of a start term). Let TG
be a Termination Graph for a start term s, let G′ be an SCC in TG consisting
only of Top-Cycles, let dpRenNT

G′ = (P,Q,R, a) be the DP problem created
from G′.

If s1 → t1, s2 → t2 ∈ P is a chain and for every ParSplit- and every Eval-
node on the path from s to s1 a basic instance exists for the independent class
constraints, then a substitution σ exists, such that sσ is a basic instance.

Proof. From lemma 10.24, it follows that a basic instance s1σ
′ exists, for some

substitution σ′.
Let G be the path from s to s1 in TG. This path does not contain Ins-

nodes and therefore cannot traverse instantiation edges, by requirement on Top
Cycles.

For the set collectCCsG′(s, s1) it holds that collectCCsG′(s, s1) = css1
]

{C1 ρ1, . . . , Ck ρk}, where C1 ρ1, . . . , Ck ρk are independent class constraints.
For a class constraint to become an independent class constraint, it must be
stripped off at an Eval - or a ParSplit-node. Since for these, basic instances
exist by assumption, also a basic instance exists for collectCCsG′(s, s1).

Now lemma 10.15 is applicable, yielding a basic instance for s.

10.4. INFINITE CHAINS IMPLY NON-TERMINATION 111

Therefore, only such Dependency Pairs and rules are included in a generated
DP problem, where we are sure that for some basic instances, these can be
reached. In order to prove existence of some basic instance of the independent
class constraints, we use a fixed depth limit. If we cannot prove the existence of
a basic instance, the Dependency Pair or the rule is left out. This only has an
influence on the strength of the approach, since every infinite chain in a reduced
DP problem is also an infinite chain in the DP problem, where no Dependency
Pairs or rules were removed.

Lemma 10.26 (Removal of Dependency Pairs and rules is complete). For a
DP problem (P,Q,R, a), an infinite (P,Q,R)-chain exists, if for a DP problem
(P ′,Q,R′, a) with P ′ ⊆ P and R′ ⊆ R an infinite (P ′,Q,R′)-chain exists.

Proof. Let s1 → t1, s2 → t2, . . . be an infinite (P ′,Q,R′)-chain. Since P ′ ⊆ P
and R′ ⊆ R, this is also a (P,Q,R)-chain.

This last lemma enables us to restrict ourselves to those Dependency Pairs
and rules, where we know that at least some instance exists. Therefore, it is
first checked whether basic instances exist, such that an SCC can be reached
at all, and whether Ins- and ParSplit-nodes in the SCC have some arbitrary
basic instance. This implies the existence of basic instances for the independent
class constraints of these nodes. Therefore, we only have to ensure existence of
the dependent class constraints, which is integrated in the search for an infinite
chain by construction of the DP problems.

10.4 Infinite Chains imply Non-Termination

The Non-Termination analysis shall again make use of the DP Framework as a
backend. The problem is that infinite DP problems cannot easily be mapped
onto infinite Haskell evaluations. This is due to the fact that a DP problem is
already infinite if the set of rules allows for infinite evaluations [GTSK05b]. An
example for this is given below:

Example 10.27 (Infinite DP problems do not imply infinite Haskell evalua-
tions). For the Haskell program

f (S x) y = f x (g x)
g x = g x

and the start term f x’ y, the following DP problem is created:

P = { new f(S(x), y) → new f(x, new g(x)) }
R = { new g(x) → new g(x) }

As can be seen, the TRS R is not terminating. This already suffices to call
this DP problem infinite, whereas the start term f x’ y is H-terminating for all
H-terminating instantiations of x’ and y.

Therefore, we have to require an infinite chain in a DP problem that resulted
from a Top-Cycle, in order to have proven Non-Termination. Please note that
we cannot restrict the analysis to minimal chains, since we do not consider

112 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

subterms in separate DP problems anymore. However, this is not a drawback,
since this restriction makes Non-Termination analysis harder, due to the fact
that for proving the existence of a minimal infinite chain, one must also show
that the instantiated right-hand sides of the Dependency Pairs in the chain
are terminating with respect to the rules. Thus, for Non-Termination analysis,
removing restrictions makes this analysis easier, because infinite minimal chains
are also infinite chains.

Theorem 10.28 (Non-Termination of Haskell). Let TG be a Termination
Graph for a start term t.

The start term t is non-H-terminating, if there exists a DP problem dpRenNT
G′

created only from Top-Cycles in TG which allows for an infinite chain.

In order to show theorem 10.28, one has to show that infinite chains cor-
respond to infinite Haskell evaluations. Thus it has to be shown first that for
DP problems created from a Termination Graph one can reduce the outermost
position first. This will be done in lemma 10.30. However, we will use the
notion of parallel-disjoint reduction there, which shall be introduced first. This
definition goes back to [Hue80].

Definition 10.29 (Parallel-Disjoint Evaluation →||, [Hue80]). Let R be a TRS.
For two terms s, t it holds that s →||

R t, iff for all positions π1, . . . , πn ∈
Occ(s) where πi⊥πj for all i 6= j, we have s|πi →R t|πi for every 1 ≤ i ≤ n.

This definition is used to show that outermost evaluation can be done first.
In the following, the reductions for the defined symbol ccCheck are disregarded,
since they are only needed to ensure the existence of basic instances. We assume
the existence of basic instances for all used terms, because otherwise the chain
would not exist, due to either a reduction of a term starting with ccCheck not
being reducible to the empty list, or a Dependency Pair in the chain would have
been removed due to independent class constraints for which no basic instance
exists.

Lemma 10.30 (Outermost evaluation w.r.t. →R can be done first). Let TG
be a Termination Graph for a start term t, let (P,Q,R, a) be a DP problem
created only from Top-Cycles in TG, and let l1 → r1, l2 → r2 ∈ R.

If t →l1→r1,π1 t1 →l2→r2,π2 t2, t →l2→r2,π2 t[r2σ2]π2 for a substitution σ2

such that l2σ2 = t|π2 , and π1 = π2π for some π, then r2σ2 →||
l1→r1

t2|π2 .

Proof. Please note that in the following, curly braces will be used for substitu-
tions, as the square brackets are used for replacement at a specific position.

For the term t it must hold that t = t[l2σ2]π2 for a matcher σ2. It also must
hold that t = t[l1σ1]π1 for a matcher σ1, and since π1 = π2π, the term t must
have the following form: t = t[l2σ2[l1σ1]π]π2 .

Since l2 → r2 is applicable at position π2 of t, the term l2 must be a variable
x at position πl which is defined as the maximal position π′ ∈ Occ(l2), for which
π = π′π′′ for some π′′ ∈ Occ(l1σ1|π′). This is the case, because subterms on
left-hand sides of rules in R consist only of constructors or variables.

Therefore, σ2(x) = C[l1σ1]π′′ for some context C. Let σ′2 = σ2, except that
σ′2(x) = x. Then σ2 = σ′2{x/C[l1σ1]π′′}.

10.4. INFINITE CHAINS IMPLY NON-TERMINATION 113

Thus, the evaluation in the original order looks as follows:

t = t[l2σ2[l1σ1]π]π2 →l1→r1,π1 t[l2σ2[r1σ1]π]π2 = t1
→l2→r2,π2 t[r2σ

′
2{x/C[r1σ1]π′′}]π2 = t2

When first applying l2 → r2, the following reduction will take place:

t = t[l2σ2[l1σ1]π]π2 →l2→r2,π2 t[r2σ
′
2{x/C[l1σ1]π′′}]π2

Since all occurrences of x in r2σ
′
2 are on orthogonal positions, it holds that

r2σ2 = r2σ
′
2{x/C[l1σ1]π′′} →||

l1→r1
r2σ

′
2{x/C[r1σ1]π′′}

As can be seen, the term r2σ
′
2{x/C[r1σ1]π′′} is equal to the term t2|π2 .

Next, it will be shown that redexes are conserved when a term is reduced
using a Dependency Pair that was created from a Termination Graph.

Lemma 10.31 (Reducibility carries over P-steps). Let (P,Q,R, a) be a DP
problem created from Top-Cycles in a Termination Graph and let s → t ∈ P.

If sτ →∗
R sσ for some substitutions τ and σ, then tτ →∗

R tσ.

Proof. Since every subterm of s consists only of constructors and variables, every
redex in sτ must be on a position πi where s|πi

∈ V. Thus, for all 1 ≤ i ≤ n,
we have τ(xi) →∗

R sσ|πi .
Thus, for the reduction sτ →∗

R sσ, it holds that sτ = (s[x1]π1 . . . [xn]πn)τ =
sτ [x1τ]π1 . . . [xnτ]πn →∗

R sτ [sσ|π1]π1 . . . [sσ|πn]πn = sσ.

For the substitution τ ′, where τ ′(x) =
{

x, if x = xi for some xi

τ(x), otherwise , we

then have sσ = sτ [sσ|π1]π1 . . . [sσ|πn]πn = sτ ′{x1/sσ|π1 , . . . , xn/sσ|πn}, which
tells us that σ = τ ′{x1/sσ|π1 , . . . , xn/sσ|πn}.

As s → t ∈ P, we get sτ →P tτ and V(t) ⊆ V(s). Therefore, t|π′j τ → sσ|πi

for every position π′j ∈ Occ(t), where t|π′j = xij
for some 1 ≤ ij ≤ n. Thus

tτ = tτ ′{x1/τ(x1), . . . , xn/τ(xn)} →∗
R tτ ′{x1/sσ|π1 , . . . , xn/sσ|πn} = tσ, which

proves the lemma.

The next step, that is needed in the proof of theorem 10.28, is to show that
given a chain, the reductions from one Dependency Pair to the next are also
possible with the Haskell evaluation strategy.

Lemma 10.32 (H−→R suffices for term reachability). Let (P,Q,R, a) be a DP
problem that was created from a Termination Graph TG using Top-Cycles only,
let s be a left-hand side in P, let t be a term from a right-hand side of P, and
let σ′, σ be two substitutions.

If tσ′ →∗
R sσ, then a substitution τ exists, such that tσ′

H−→
∗
R sτ and sτ →∗

R
sσ.

Proof. This lemma is proven inductively. As induction relation, the lexico-
graphic combination of whether s matches tσ′, where in case of a match we
have a descent in this order, and over the length of the reduction tσ′→||

R
∗
sσ is

114 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

used. This is a well-founded order, because both orders which are combined are
well-founded.

Case 1: s matches tσ′

Then a substitution µ exists, such that sµ = tσ′. By setting τ = µ, we get

tσ′
H−→

0

R sτ and sτ = tσ′ →∗
R sσ.

Case 2: s does not match tσ′

In this case, a position π = e(tσ′) exists, where π 6= ε. This position must
also be a position of s: Since s is a left-hand side in P, all subterms consist only
of constructors and variables. Therefore, since s does not match tσ′, the term
tσ′|π must be a term of the form f(t1, . . . , tn)ν, where a rule f(t1, . . . , tn) → r
exists in R, the term s|π has the form C(s1, . . . , sm), where C is a constructor,
and ν is some substitution. This must be the case, since a variable at s|π would
not have blocked the matching, and it must hold that tσ′|π →∗

R s|π, because π
is the leftmost outermost redex.

Since e(tσ′) = π, the rule application respects the Haskell evaluation strat-
egy, i.e., tσ′

H−→R,π tσ′[rν]π. By lemma 10.30, this evaluation can be done first
without losing the reachability of sσ. Therefore, tσ′[rν]π →∗

R sσ and the reduc-
tion tσ′[rν]π→||

R
∗
sσ is shorter than the reduction tσ′→||

R
∗
sσ, because the same

rule must be applied in the reduction tσ′ →∗
R sσ. The induction hypothesis for

this reduction yields a substitution τ , where tσ′[rν]π
H−→
∗
R sτ and sτ →∗

R sσ.

This proves the claim, since tσ′
H−→R tσ′[rν]π

H−→
∗
R sτ .

Now the above lemma enables us to show the main theorem, which states
that for an infinite chain, an infinite Haskell evaluation of an instance of the
start term exists.

Proof of theorem 10.28. Let (P,Q,R, a) be a DP problem created from Top-
Cycles in a Termination Graph TG for the start term t, where an infinite chain
s1 → t1, s2 → t2, . . . exists.

Thus, a substitution σ exists, such that for every i ∈ N: tiσ →∗
R si+1σ.

Without loss of generality, we can assume that the sets of variables in two
consecutive Dependency Pairs in the chain are disjoint, i.e., for all i ∈ N it
holds that V(si) ∩ V(si+1) = ∅. Then, the substitution σ can be split into
an infinite sequence of substitutions σi, such that siσ = siσi, which implies
tiσ = tiσi.

Because only Top-Cycles are considered, a term containing s1σ1 on its eval-
uation position can be reached by a finite number of Haskell evaluation steps
from an instance tσt of the start term. This term can be reduced by a finite
number of Haskell evaluation steps to a term containing the subterm t1σ1 on a
position which is reducible w.r.t. →H.

As the preconditions of lemma 10.32 are fulfilled (because t1σ1 →∗
R s2σ2), a

substitution τ2 exists, such that t1σ1
H−→
∗
R s2τ2, where s2τ2 →∗

R s2σ2.

For every i ≥ 2, we have that siτi
H−→P tiτi and thus tiτi →∗

R tiσi by
lemma 10.31. This enables another application of Lemma 10.32 starting with

10.4. INFINITE CHAINS IMPLY NON-TERMINATION 115

tiτi, since tiτi →∗
R tiσi →∗

R si+1σi+1. Thereby, we get tiτi
H−→
∗
R si+1τi+1 for

some substitution τi+1.
This means that an infinite evaluation sequence which respects the Haskell

evaluation strategy exists:

tσt →∗
H s1σ

H−→P t1σ
H−→
∗
R s2τ2

H−→P t2τ2
H−→
∗
R s3τ3 . . .

Every H−→P -step comprises at least one Eval -node, which corresponds to a
→H-step, i.e., these correspond to case (a) of the definition of Non-H-Termination
(definition 10.1). Furthermore, any ParSplit-node with a constructor as head
symbol corresponds to case (c) of that definition. The Case- and TyCase-
nodes correspond to the instantiation of the start term. The VarExp-nodes,
which are contained in a DP path, correspond to case (b) of the definition of
Non-H-Termination. Last, the case of Ins-nodes shall be considered. Since
these are contained within the Top-Cycles, there is a sequence of substitutions,
such that its cases are used in the infinite chain. This must be reachable from
the right-hand side of a Dependency Pair, since it occurs on the infinite chain.
Thus, the Haskell evaluation must follow this path, since this path is determined
by the subterms of the right-hand side of the previous Dependency Pair, i.e.,
the subterms of the Ins-node. Therefore, this also corresponds to the Haskell
evaluation strategy, since the defined function symbol of the Ins-node occurs
on the outermost position, as only Top-Cycles are considered.

Therefore, an instance of the start term exists which is non-H-terminating.

The following example shall demonstrate that the encoding of type infor-
mation into the terms is vital for proving non-termination of terms. This is,
because terms might be terminating because of type information only.

Example 10.33 (Termination based on types only). For the following Haskell
program, the start term base is to be analyzed.

class Base a where
base :: a

instance Base Bool where
base = True

instance Base a => Base [a] where
base = [base]

As can be seen, the function base makes a recursive call to base again in
the case of lists. So the created DP problem would look as follows (when leaving
out the type classes), if no types would be contained in the terms:

P = { new base → new base }
R = ∅

This DP problem clearly contains an infinite chain. However, the original
program is terminating. This is due to the fact that the type enforced by the
context determines the next Base instance that is to be used in the recursive call
of the list instance. Since this type is finite and cannot be changed, eventually

116 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

the call will be made to the instance Base Bool. This can be seen, when types
are included in the terms:

P = { new base(app([], a)) → new base(a) }
R = ∅

This DP problem does not contain an infinite chain, as in every recursive
call the size of the argument is decreased. This can be shown by the Size-Change
processor [TG05], for example.

Last, an example shall be presented, where the Non-Termination analysis
will find out that the given start term is indeed not H-terminating for the ac-
companying Haskell program.

Example 10.34 (Non-H-terminating function div). We want to analyze the
start term div m n in the following Haskell program:

data Nats = Z | S Nats

minus Z _ = Z
minus x Z = x
minus (S x) (S y) = minus x y

div Z _ = Z
div x y = S (div (minus x y) y)

As can be seen, this program calculates the division of two natural numbers
by first testing whether the dividend is Zero. If this is the case, the result is Zero,
as well. Otherwise, it subtracts the divisor from the dividend and adds one to the
result. Here, the ceiling function is applied to the result, i.e., div m n =

⌈
m
n

⌉
.

For this program, the Termination Graph shown in figure 10.6 is constructed.
As we can observe, there is only one Top-Cycle in the Termination Graph,
namely the cycle for div. Thus, the created DP problem for Non-Termination
is the following:

P = { new div(S(m0), n, []) → new div(new minus(S(m0), n, []), n, []) }

R = { new minus(m0, Z, []) → S(m0)
new minus(m0, S(n0), []) → new minus0(m0, n0, [])
new minus0(m0, Z, []) → m0
new minus0(Z, S(n00), []) → Z
new minus0(S(m00), S(n00), []) → new minus0(m00, n00, []) }

When this DP problem is processed by the Non-Termination processor, which
is described in [GTSK05a], then it returns “no” due to the following infinite
chain:

new div(S(m0′),Z, []) →P new div(new minus(m0′,Z, []),Z, [])
with rule new div(S(m0), n, []) → new div(new minus(m0, n, []), n, [])
and matcher [n/Z, m0/m0′]

→R new div(S(m0′),Z, [])
with rule new minus(m0′′, Z, []) → S(m0′′) at position 1
and matcher [m0′′/m0′]

10.4. INFINITE CHAINS IMPLY NON-TERMINATION 117

Figure 10.6: Termination Graph for the non-H-terminating start term div m n

As can be seen, the term div (S m0’) Z can be rewritten in two steps to
itself again. This is, because we forgot to test for a division by zero in the
above program. In this case, the subtraction will not modify the first argument
of div, and therefore, the evaluation of this instance of the start term will not
terminate.

As this chapter showed, for a restricted set of examples, non-H-termination of
start terms can be proven. However, this approach has its drawbacks. Because
only Top-Cycles are considered, Non-Termination of terms that require an Ins-
node, such as from Z for example, cannot be shown as non-H-terminating, since
in order to built a cycle, a generalization via an instantiation edge must be
performed. Furthermore, the function seq, which is defined in the standard

118 CHAPTER 10. NON-TERMINATION ANALYSIS FOR HASKELL

Prelude and enforces evaluation of the first argument to its weak head normal
form, and then continues with the second argument, is a problem. When this
function is used, then the subterms of it would have to be regarded further,
which is not allowed in our Top-Cycles. However, this function is often used
in order to decrease the amount of laziness in Haskell programs, such as for
example in the case of integer additions.

Thus, a lot of further work remains to be done to develop a component
showing Non-Termination of Haskell programs that is comparable in strength
to the termination proving component.

Chapter 11

Conclusion and Outlook

In this thesis, various improvements of the Haskell termination analysis have
been presented that were all implemented in the automatic termination prover
AProVE [GTSKF04, GSKT06]. After a short introduction into the preliminar-
ies and the previous Haskell Termination approach in Chapters 2 and 3, it has
been shown in Chapter 4 how to include type classes into the formalism pre-
sented in [GSSKT06], and how to get from DP problems with free variables in
both the Dependency Pairs and the rules to such DP problems, where only the
Dependency Pairs contain free variables.

Chapter 5 presented a way to reduce Haskell programs to only those com-
ponents that are possibly used in the evaluation of the start term. This speeds
up the whole analysis, since it is not required to consider every rule and every
data type in the transformations to simpler Haskell and in the construction of
the Termination Graph.

The next improvement, that was developed as a part of this thesis, is the
renaming which was presented in Chapter 6. Here, different cycles in the Ter-
mination Graph are assigned different names, which cares for the separation of
cycles in the created DP problem. Furthermore, it allows to always generate
first-order terms, which speeds up the creation of the estimated Dependency
Graph a lot and also makes the standard orderings work better. Finally, it
also includes type classes in the created terms, which makes the resulting rules
non-overlapping.

The renaming enabled us to show in Chapter 7 that instead of proving the
absence of arbitrary chains in the DP problems, it suffices to consider only
minimal innermost chains. This makes the termination analysis easier, and
allows for more techniques developed for Term Rewriting to be applicable to
the DP problems.

In Chapter 8, we have evaluated these improvements on a set of examples
taken from widely used libraries that ship with the Hugs interpreter [JP99]. On
these examples, we could witness a large improvement in strength, since we in-
crease the number of examples that were shown to be terminating from 56.67 %
to 76.78 %. The largest improvement was due to the renaming. But still, the
introduction of minimality and of innermost evaluation yielded further examples
that could be shown terminating. Among these examples there are such that
are relevant in pratice, but could not be shown with any other technique that
was applicable without having minimality and innermost chains.

119

120 CHAPTER 11. CONCLUSION AND OUTLOOK

Also, it was shown in Chapter 9 how lazy-termination, a property that only
makes sense in a lazy evaluating language like Haskell, can be reduced to termi-
nation analysis. This based on previous work in [PSS97], but now also considers
functional types.

Last, Chapter 10 presented a newly developed approach for showing non-
termination of Haskell start terms. This aids programmers in finding errors,
since the produced counterexample can be traced in order to find and correct
errors.

Especially the presented approach for non-termination analysis is rather
weak. This is due to the lazy evaluation strategy that is employed by Haskell.
Furthermore, the Haskell libraries often use forced strictness to calculate num-
bers, for example. These hinder our approach, since one has to generalize these
calculations which makes our approach fail. Thus, it would be interesting to
investigate how to handle such evaluations to a weak-head normal form of the
first argument by the predefined Haskell function seq. An idea would be to
disregard the first argument and considering only the second argument of this
function. Then, Non-Termination of the program would follow from an infinite
chain, because either the first argument cannot be evaluated to a weak-head
normal form, or an infinite evaluation exists using the second argument of seq.

Another interesting topic is interaction with the environment. At the mo-
ment, the IO Monad in Haskell is not handled very well: All calculations with
it are either marked as terminating with unknown result or even marked as
non-terminating. It would be promising to make some assumptions about the
environment, such as for example that all inputs are finite, and then reconsider
these functions. It seems as if under such circumstances, one can better handle
this very basic pattern of Haskell programs.

Furthermore, in the case of termination analysis we make a very rigid as-
sumption: If we identify a term as an instance of another term, we assume that
all subterms must be shown terminating, since these might be evaluated at some
other point. It would be interesting, if one can show that an argument will never
be evaluated. Then, termination of this argument would not need to be shown.
An approach to do this would be to do an analysis on the termination graph
and follow those paths, where a term was matched to a variable.

The above might seem, as if a strictness analysis [Nöc93, SSPS95] could
help. However, strictness analysis is only concerned with whether the weak-head
normal form of a term can be precomputed without changing the termination
behavior. This is not what helps in H-termination proofs, because there we
would be interested in finding out that a term is not considered at all or only
up to a certain constructor depth. In the latter case, one could then switch to
an analysis for n-lazy-termination, where n is the depth that is never exceeded.

For the Non-Termination analysis, strictness analysis seems much better
suited. However, it is unclear how to use it for this purpose, since strictness only
means that a reduction to a weak-head normal form is required by a context.
This does not help in extending the Top-Cycles to subterms of other terms,
because in order to infer Non-Termination, we need full evaluation of a term.

Also, the generated Dependency Pairs are filtered in the presented approach.
This is a rather harsh approach, since it removed quite a lot of information that
was present, and disallows us to show non-H-termination for such terms. Here,
an adaption of the approach for Prolog [SKGST07] seems interesting, since
this approach also handles fresh variables. This approach needs constructor

121

rewriting, which was already discussed in section 7.2, but was not used in this
thesis since it seemed to entail more complex DP problems. This might change
however, if fresh variables could be used, in exchange for more complicated
DP problems.

Bibliography

[AG00] Thomas Arts and Jürgen Giesl. Termination of Term Rewriting
Using Dependency Pairs. Theoretical Computer Science, 236(1–
2):133–178, 2000.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, Cambridge, UK, 1998.

[CPR06] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Ter-
minator: Beyond safety. In Proceedings of the 18th conference on
Computer Aided Verification (CAV ’06), volume 4144 of Lecture
Notes in Computer Science, pages 415–418, Seattle, USA, 2006.

[CT99] Michael Codish and Cohavit Taboch. A semantic basis for termi-
nation analysis of logic programs. Journal of Logic Programming,
41(1):103–123, 1999.

[GSKT06] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann.
AProVE 1.2: Automatic Termination Proofs in the Dependency
Pair Framework. In Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR ’06), volume 4130
of Lecture Notes in Artificial Intelligence, pages 281–286, Seattle,
USA, 2006.

[GSSKT06] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René
Thiemann. Automated Termination Analysis for Haskell: From
Term Rewriting to Programming Languages. In Proceedings of the
17th International Conference on Rewriting Techniques and Ap-
plications (RTA ’06), volume 4098 of Lecture Notes in Computer
Science, pages 297–312, Seattle, USA, 2006.

[GTSK05a] Jürgen Giesl, René Thiemann, and P. Schneider-Kamp. Proving
and Disproving Termination of Higher-Order Functions. In Proceed-
ings of the 5th International Workshop on Frontiers of Combining
Systems (FroCoS ’05), volume 3717 of Lecture Notes in Artificial
Intelligence, pages 216–231, Vienna, Austria, 2005.

[GTSK05b] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The De-
pendency Pair Framework: Combining Techniques for Automated
Termination Proofs. In Proceedings of the 11th International Con-
ference on Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR ’04), volume 3452 of Lecture Notes in Computer
Science, pages 301–331, Montevideo, Uruguay, 2005.

123

124 BIBLIOGRAPHY

[GTSKF03] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan
Falke. Improving Dependency Pairs. In Proceedings of the 10th In-
ternational Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR ’03), volume 2850 of Lecture Notes in
Artificial Intelligence, pages 165–179, Almaty, Kazakhstan, 2003.

[GTSKF04] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan
Falke. Automated Termination Proofs with AProVE. In Proceed-
ings of the 15th International Conference on Rewriting Techniques
and Applications (RTA-04), volume 3091 of Lecture Notes in Com-
puter Science, pages 210–220, Aachen, Germany, 2004.

[GTSSK07] Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter
Schneider-Kamp. Proving Termination by Bounded Increase. In
Proceedings of the 21st International Conference on Automated De-
duction (CADE ’07), volume 4603 of Lecture Notes in Artificial
Intelligence, pages 443–459, Bremen, Germany, 2007.

[Has04] Christian Haselbach. Transformation Techniques to Verify Imper-
ative and Functional Programs. Diploma thesis, RWTH Aachen,
Germany, 2004.

[HM07] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination
Tool: Techniques and Features. Information and Computation,
205(4):474–511, 2007.

[Hue80] Gérard Huet. Confluent Reductions: Abstract Properties and
Applications to Term Rewriting Systems. Journal of the ACM,
27(4):797–821, 1980.

[Jon03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press, 2003. Also avail-
able from http://www.haskell.org/definition.

[JP99] Mark P. Jones and John C. Peterson. The Hugs 98 user manual,
1999. Available from http://www.haskell.org/hugs.

[Käu05] Christian Käunicke. Automatic Termination Analysis of Logic Pro-
grams. Diploma thesis, RWTH Aachen, Germany, 2005.

[MB05] Fred Mesnard and Roberto Bagnara. cTI: A Constraint-Based Ter-
mination Inference Tool for ISO-Prolog. Theory and Practice of
Logic Programming, 5(1&2):243–257, 2005.

[MZ07] Claude Marché and Hans Zantema. The Termination Competition.
In Proceedings of the 18th International Conference on Rewriting
Techniques and Applications (RTA ’07), volume 4533 of Lecture
Notes in Computer Science, pages 303–313, Paris, France, 2007. See
also http://www.lri.fr/~marche/termination-competition.

[Nöc93] Eric Nöcker. Srictness Analysis using Abstract Reduction. In Pro-
ceedings of the conference on Functional programming languages
and computer architecture, pages 255–265, Copenhagen, Denmark,
1993. ACM Press.

http://www.haskell.org/definition
http://www.haskell.org/hugs
http://www.lri.fr/~marche/termination-competition

BIBLIOGRAPHY 125

[PSS97] Sven Eric Panitz and Manfred Schmidt-Schauss. TEA: Automati-
cally proving termination of programs in a non-strict higher order
functional language. In Proceedings of the 4th International Sym-
posium on Static Analysis (SAS ’97), volume 1302 of Lecture Notes
in Computer Science, pages 345–360, Paris, France, 1997.

[SKGST07] Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and
René Thiemann. Automated Termination Analysis for Logic Pro-
grams by Term Rewriting. In Proceedings of the 16th International
Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR ’06), volume 4407 of Lecture Notes in Computer Science,
pages 177–193, Venice, Italy, 2007.

[Son07] Matthias Sondermann. Automatische Terminierungsanalyse für
imperative Programme. Diploma thesis, RWTH Aachen, Germany,
2007.

[SSPS95] Manfred Schmidt-Schauß, Sven Eric Panitz, and Marko Schütz.
Strictness Analysis by Abstract Reduction using a Tableau Cal-
culus. In Proceedings of the Second International Static Analysis
Symposium, volume 983 of Lecture Notes in Computer Science,
pages 348–365, Glasgow, UK, 1995.

[Swi05] Stephan Swiderski. Terminierungsanalyse von Haskellprogrammen.
Diploma thesis, RWTH Aachen, Germany, 2005.

[TG05] René Thiemann and Jürgen Giesl. The Size-Change Principle
and Dependency Pairs for Termination of Term Rewriting. Ap-
plicable Algebra in Engineering, Communication and Computing,
16(4):229–270, 2005.

[Tur36] Alan M. Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the London Mathemati-
cal Society, 42(2):230–265, 1936.

List of Figures

3.1 Termination Graph for take u (from m) 24

4.1 Termination Graph for plus x y containing TyCase-nodes . . . 33
4.2 Termination Graph for foldN n e fs containing a ParSplit-

node with variable head . 35
4.3 Termination Graph for take u (from m) with a simple prede-

cessor computation . 36

6.1 Termination Graph for f x’ y’, illustrating renaming 46
6.2 Termination Graph for add n m, using a higher-order function . 48
6.3 Termination Graph for take u (from m) with renaming 49

7.1 Termination Graph for f x y, illustrating the order on SCCs . . 72
7.2 Termination Graph for f x, illustrating minimal chains 74

9.1 Termination Graph for Lazy-Termination analysis of start term
repeat (x::Nats) . 89

9.2 Termination Graph for h m n, where there is not a ParSplit-
node in every cycle . 90

10.1 Termination Graph for f g x, showing a ParSplit-node with
variable head as child of an Ins-node 96

10.2 Termination Graph for start term le1 Z, illustrating why no Ins-
node must be on the path to a non-terminating SCC 97

10.3 Termination Graph for f x (g y) showing dependent and inde-
pendent class constraints . 101

10.4 Termination Graph for f x y, showing the collection of class con-
straints . 102

10.5 Termination Graph for start term h x y z, which shows why Q
must contain ccCheck(x) . 108

10.6 Termination Graph for the non-H-terminating start term div m n 117

127

Index

⇒H, 55
⊥, 19
→H, 16
↪→H, 62
 H, 87
H−→, 20
�TG, 71
ε−→,

>ε−−→, 20
→||, 112
D,B, 19

arity, 13, 19

Basic Instance, 100
bRTG, 50

for general terms, 50
for substitutions, 50

ccCheck, 106
chain, 21

minimal, 21
class constraint, 14

dependent, 101
independent, 101

class member, 14
collectCCs, 102
con, 37
constructor symbol, 20
Correction of DP problems, 52
coveredConstraints, 31

defined symbol, 20
Dependency Pair, 20
dp, 39
DP Framework, 20
DP Path, 38
DP problem, 21

finite, 21
infinite, 21

dpRen, 51
dpRenNT , 107

drop, 56

ev, 36
Evaluated Enough, 56
evaluation position, 15

filter, 29

H-termination, 17
Haskell, 11

classes and instances, 13
data definition, 11
function declaration, 12
positions of a term, 15
rule application, 12
term notation with types and class

constraints, 17
Termination Approach, 23
types, 13

instances, 29
instantiation edge, 32
introCCs, 105

Lazy Termination, 83
class LazyTermination, 84
lazyGenerator, 85
lazyTerminating, 84

leftmost-outermost, 20

necRed, 41
Necessary Reduction, 56
Non-H-Termination, 93

Occ, 19

P], 21
positions of a term, 19
PUTG, 34

reduce, 27
reduceStep, 27

129

130 INDEX

Renaming, 49
renTG, 51
rl, 40
rlNT , 106
Rule Path, 38

SCC, 70
SCCs, 70
start term, 9
substitution, 19
subterm, 19

proper subterm, 19

term, 19
ground, 9, 19

Term Rewrite System, 19
applicative, 20

terminating, 20
Termination Graph, 31

Case, 32
Eval, 32
Ins, 32
ParSplit, 32
TyCase, 32
VarExp, 32

Top-Cycle, 95

undrop, 56
Usable Instance, 104
UTG, 34

V, 19
VH, 18
VT, 18

weak head normal form, 13

	1 Introduction
	2 Preliminaries
	2.1 Syntax and Semantics of Haskell
	2.2 Term Rewrite Systems
	2.3 Dependency Pair Framework

	3 Previous Haskell Termination Approach
	4 Extension to Type Classes
	4.1 Generating Class Instances
	4.2 Extending the Termination Graph

	5 Reduction to Necessary Components
	6 Renaming
	6.1 Renaming nodes of a Termination Graph
	6.2 Correctness of Renaming
	6.3 Examples for the strength of Renaming

	7 Innermost Termination Analysis
	7.1 Towards Innermost: Minimal Chains
	7.2 Switching to Innermost

	8 Evaluation of the Improvements
	9 Lazy-Termination Analysis
	9.1 Generating Instances for Lazy-Termination
	9.2 Reduction of Lazy-Termination to H-Termination
	9.3 Examples for Lazy-Termination

	10 Non-Termination Analysis for Haskell
	10.1 Motivation for allowing evaluation inside any argument of a constructor
	10.2 Termination Graph for Non-Termination
	10.3 Basic Instances and DP problems
	10.4 Infinite Chains imply Non-Termination

	11 Conclusion and Outlook
	References
	List of Figures
	Index

