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Abstract We present a modular framework to analyze the innermost runtime complexity of
term rewrite systems automatically. Our method is based on the dependency pair framework
for termination analysis. In contrast to previous work, we developed a direct adaptation of
successful termination techniques from the dependency pair framework in order to use them
for complexity analysis. By extensive experimental results, we demonstrate the power of our
method compared to existing techniques.

1 Introduction

In practice, one is often not only interested in analyzing the termination of programs, but
one also wants to check whether algorithms terminate in reasonable (e.g., polynomial) time.
While termination of term rewrite systems (TRSs) is well studied, only recently first results
were obtained which adapt termination techniques in order to obtain polynomial complexity
bounds automatically, e.g., [2–5,7,10,17–19,22–24,26,29,30]. Here, [3,17–19] consider the
dependency pair (DP) method [1, 11, 12, 16], which is one of the most popular termination
techniques for TRSs. Moreover, [30] introduces a similar modular approach for complexity
analysis based on relative rewriting. There is also a related area of implicit computational
complexity which aims at characterizing complexity classes, e.g., using type systems [21],
bottom-up logic programs [15], and also using termination techniques like dependency pairs
(e.g., [23]).

Techniques for automated termination analysis of term rewriting are very powerful and
have been successfully used to analyze termination of programs in many different languages
(e.g., Java [8, 28], Haskell [13], and Prolog [14]). Hence, by adapting these termination
techniques, the ultimate goal is to obtain approaches which can also analyze the complexity
of programs automatically.
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In this paper, we present a fresh adaptation of the DP framework for innermost runtime
complexity analysis [17]. We use a different notion of “dependency pairs” for complexity
analysis than previous works [3, 17, 19]. This allows us to adapt the termination techniques
(“processors”) of the DP framework in a much more direct way when using them for com-
plexity analysis. On the other hand, our approach is restricted to the innermost evaluation
strategy, whereas [3, 17, 19] also analyze runtime complexity of full rewriting. Like [30],
our method is modular (i.e., we can determine the complexity of a TRS by determining
the complexity of certain sub-problems and by returning the maximum of these complexi-
ties). But in contrast to [30], which allows to investigate derivational complexity [20], we
focus on innermost runtime complexity. In this way, we can inherit the modularity aspects
of the DP framework and benefit from its transformation techniques, which increases power
significantly.

A preliminary version of this paper appeared in [27]. The current paper extends [27]
substantially, e.g., by including proofs for all theorems, by two new processors for com-
plexity analysis (Thm. 32 and 34) and experiments to justify their significance, by detailed
information on the impact of the different processors in Sect. 6, and by several additional
remarks throughout the paper.

After introducing preliminaries in Sect. 2, in Sect. 3 we adapt the concept of depen-
dency pairs from termination analysis to so-called dependency tuples for complexity analy-
sis. While the DP framework for termination works on DP problems, we now work on DT
problems (Sect. 4). Sect. 5 adapts the processors of the DP framework in order to analyze the
complexity of DT problems. We implemented our contributions in the termination analyzer
AProVE. Due to the results of this paper, AProVE was the most powerful tool for innermost
runtime complexity analysis in the International Termination Competition in 2010 – 2012.
In Sect. 6 we report on extensive experiments where we compared our technique empirically
with previous approaches.

2 Runtime Complexity of Term Rewriting

See e.g. [6] for the basics of term rewriting, where we only consider finite rewrite systems.
Let T (Σ ,V) be the set of all terms over a (finite) signature Σ and a set of variables V . We just
write T if Σ and V are clear from the context. The arity of a function symbol f ∈Σ is denoted
by ar( f ) and the size of a term is |x| = 1 for x ∈ V and | f (t1, . . . , tn)| = 1+ |t1|+ . . .+ |tn|.
The derivation height of a term t w.r.t. a relation→ is the length of the longest sequence of
→-steps starting with t, i.e., dh(t,→) = sup{n | ∃t ′ ∈ T , t→n t ′ }, cf. [20].

Here, for any set M ⊆ N∪{ω}, “supM” is the least upper bound of M and sup∅ = 0.
Note that since we restricted ourselves to finite TRSs, the rewrite relation is finitely branch-
ing and thus, the set {n | ∃t ′ ∈ T , t →n t ′ } is infinite iff t starts an infinitely long sequence
of→-steps. Thus, dh(t,→) = ω iff t is non-terminating w.r.t. the relation→ (i.e., iff there
is an infinite reduction t→ t1→ t2→ . . .). Note that in the literature, dh is usually left unde-
fined for terms with non-terminating derivations. However, we extended it in order to treat
terminating and non-terminating terms in a uniform way.

Example 1 As an example, consider the TRS R= {dbl(0)→ 0, dbl(s(x))→ s(s(dbl(x)))}.
Then dh(dbl(sn(0)),→R) = n+1, but dh(dbln(s(0)),→R) = 2n +n−1.

For a TRS R with defined symbols Σd(R) = { root(`) | `→ r ∈R}, a term f (t1, . . . , tn) is
basic if f ∈ Σd(R) and t1, . . . , tn do not contain symbols from Σd(R). If R is clear from the
context, we just write Σd instead of Σd(R). So for R in Ex. 1, the basic terms are dbl(sn(0))
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and dbl(sn(x)) for n ∈ N, x ∈ V . The innermost runtime complexity function ircR maps any
n ∈ N to the length of a longest sequence of i→R-steps starting with a basic term t with
|t| ≤ n. Here, “ i→R” is the innermost rewrite relation and TB is the set of all basic terms.

Definition 2 (ircR [17]) For a TRS R, its innermost runtime complexity function ircR :N→
N∪{ω} is ircR(n) = sup{dh(t, i→R) | t ∈ TB, |t| ≤ n}.

If one only considers evaluations of basic terms, the (runtime) complexity of the TRS
R in Ex. 1 is linear (ircR(n) = n−1 for n≥ 2). But if one also permits evaluations starting
with dbln(s(0)), the complexity of the dbl-TRS is exponential.

When analyzing the complexity of programs, one is typically interested in evaluations
where a defined function like dbl is applied to data objects (i.e., terms without defined sym-
bols). Therefore, runtime complexity corresponds to the usual notion of “complexity” for
programs [4, 5]. Note that most termination techniques which transform programs to TRSs
(e.g., [8, 13, 14, 28]) result in rewrite systems where one only regards innermost rewrite se-
quences. This also holds for techniques to analyze termination of languages like Haskell by
term rewriting [13], although Haskell has a lazy (outermost) evaluation strategy. Thus, we
restrict ourselves to innermost rewriting, since this suffices to analyze TRSs resulting from
the transformation of programs. So for any TRS R, we want to determine the asymptotic
complexity of the function ircR.

Definition 3 (Asymptotic Complexities) Let C = {Pol0,Pol1,Pol2, . . . ,?} with the order
Pol0 < Pol1 < Pol2 < . . . < ?. Let v be the reflexive closure of <. For any function
f : N → N∪ {ω} we define its complexity ι( f ) ∈ C as follows: ι( f ) = Polk if k is the
smallest number with f (n) ∈ O(nk) and ι( f ) = ? if there is no such k. For any TRS R, we
define its complexity ιR as ι(ircR).

So the TRS R in Ex. 1 has linear complexity, i.e., ιR = Pol1. As another example,
consider the following TRS R where “m” stands for “minus”.

Example 4 m(x,y)→ if(gt(x,y),x,y) gt(0,k)→ false p(0)→0

if(true,x,y)→s(m(p(x),y)) gt(s(n),0)→ true p(s(n))→n
if(false,x,y)→0 gt(s(n),s(k))→gt(n,k)

Here, ιR = Pol2 (e.g., m(sn(0),sk(0)) starts evaluations of quadratic length).

In Def. 3, we restricted ourselves to polynomial complexity classes, because the under-
lying techniques that we use to generate suitable well-founded orders automatically result in
polynomial bounds. However, the approach could also be used for other complexity classes
(then the order < would have to be extended accordingly).

3 Dependency Tuples

In the DP method, for every f ∈ Σd one introduces a fresh symbol f ] with ar( f ) = ar( f ]).
For a term t = f (t1, . . . , tn) with f ∈ Σd we define t] = f ](t1, . . . , tn) and let T ] = { t] |
t ∈ T , root(t) ∈ Σd }. Let Pos(t) contain all positions of t and let Posd(t) = {π | π ∈ Pos(t),
root(t|π)∈ Σd }. Then for every rule `→ r with Posd(r) = {π1, . . . ,πn}, its dependency pairs
are `]→ r|]π1 , . . . , `]→ r|]πn .

While DPs are used for termination, for complexity we have to regard all defined func-
tions in a right-hand side at once. The reason is that in order to estimate the derivation
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height of a term corresponding to the left-hand side of a rule `→ r, we have to consider the
rewrite steps originating from r. Here, all subterms of r with defined root symbol may pos-
sibly be reduced and can thus contribute to the overall derivation height. Thus, we extend
the concept of weak dependency pairs [17–19] and only build a single dependency tuple
`] → [r|]π1 , . . . ,r|

]
πn ] for each `→ r. To avoid an extra treatment of tuples, for every n ≥ 0,

we introduce a fresh compound symbol COMn of arity n and use `]→ COMn(r|]π1 , . . . ,r|
]
πn).

Definition 5 (Dependency Tuple) A dependency tuple is a rule of the form s]→ COMn(t
]
1,

. . . , t]n) for s], t]1, . . . , t
]
n ∈ T ]. Let `→ r be a rule with Posd(r) = {π1, . . . ,πn}. Then DT (`→

r) is defined to be `] → COMn(r|]π1 , . . . ,r|
]
πn). To make DT (`→ r) unique, we use a total

order < on positions where π1 < .. . < πn. For a TRS R, let DT (R) = {DT (`→ r) | `→
r ∈R}.

Example 6 For the TRS R from Ex. 4, DT (R) is the following set of rules.

m](x,y)→ COM2(if
](gt(x,y),x,y),gt](x,y)) (1)

if](true,x,y)→ COM2(m
](p(x),y),p](x)) (2)

if](false,x,y)→ COM0 (3)

p](0)→ COM0 (4)

p](s(n))→ COM0 (5)

gt](0,k)→ COM0 (6)

gt](s(n),0)→ COM0 (7)

gt](s(n),s(k))→ COM1(gt
](n,k)) (8)

For termination, one analyzes chains of DPs, which correspond to sequences of function
calls that can occur in reductions. Since DTs represent several DPs, we now obtain chain
trees.

Definition 7 (Chain Tree) Let D be a set of DTs and R be a TRS. Let T be a (possibly
infinite) tree whose nodes are labeled with both a DT from D and a substitution. Let the
root node be labeled with (s] → COMn(. . .) | σ). Then T is a (D,R)-chain tree for s]σ if
the following holds for all nodes of T : If a node is labeled with (u]→ COMm(v

]
1, . . . ,v

]
m) |

µ), then u]µ is in normal form w.r.t. R. Moreover, if this node has the children (p]1 →
COMm1(. . .) | τ1), . . . ,(p]k→ COMmk(. . .) | τk), then there are pairwise different1 i1, . . . , ik ∈
{1, . . . ,m}with v]i j

µ
i→∗R p]jτ j for all j ∈ {1, . . . ,k}. A path in the chain tree is called a chain.

Example 8 For the TRS R from Ex. 4 and its DTs from Ex. 6, the tree in Fig. 1 is a
(DT (R),R)-chain tree for m](s(0),0). Here, we use substitutions with σ(x) = s(0) and
σ(y) = 0, τ(x) = τ(y) = 0, and µ(n) = µ(k) = 0.

Note that the chains in Def. 7 correspond to “innermost chains” in the DP framework
[1, 11, 12]. When considering full instead of innermost rewriting, the DP framework uses a
different notion of chains where, e.g., u]µ would not have to be in normal form. However, in
contrast to other techniques for complexity analysis with dependency pairs [3, 17–19], our
approach is inherently restricted to the innermost rewrite strategy.

For any term s] ∈ T ], we now define its complexity as the maximal number of nodes in
any chain tree for s]. However, sometimes we do not want to count all DTs in the chain tree,
but only the DTs from some subset S. This will be crucial to adapt termination techniques
for complexity, cf. Sect. 5.2 and 5.4.

1 One could also allow chain trees where i1, . . . , ik do not have to be pairwise different. But Thm. 12
shows that for complexity analysis, it is already sufficient to consider just chain trees with pairwise different
i1, . . . , ik .
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m](x,y)→ COM2(if
](gt(x,y),x,y),gt](x,y)) | σ

if](true,x,y)→ COM2(m
](p(x),y),p](x)) | σ gt](s(n),0)→ COM0 | µ

m](x,y)→ COM2(if
](gt(x,y),x,y),gt](x,y)) | τ p](s(n))→ COM0 | µ

if](false,x,y)→ COM0 | τ gt](0,k)→ COM0 | µ

Fig. 1 Chain tree for the TRS from Ex. 4

Definition 9 (Complexity of Terms, Cplx〈D,S,R〉, |T |S ) Let D be a set of dependency tu-
ples, S ⊆D, R a TRS, and s] ∈ T ]. For a chain tree T , |T |S ∈N∪{ω} denotes the number
of nodes in T that are labeled with a DT from S. We define Cplx〈D,S,R〉(s

]) = sup{|T |S | T
is a (D,R)-chain tree for s]}. In other words, Cplx〈D,S,R〉(s

]) is the maximal number of
nodes from S occurring in any (D,R)-chain tree for s]. For terms s] without a (D,R)-chain
tree, we define Cplx〈D,S,R〉(s

]) = 0.

Example 10 For R from Ex. 4, we have Cplx〈DT (R),DT (R),R〉(m
](s(0),0)) = 7, since the

maximal tree for m](s(0),0) in Fig. 1 has 7 nodes. In contrast, if S is DT (R) without the
gt]-DTs (6) – (8), then Cplx〈DT (R),S,R〉(m

](s(0),0)) = 5.

Dependency tuples can be used to approximate the derivation heights of terms. The
reason is that every actual reduction corresponds to a chain tree. However, the converse
does not hold, i.e., there exist chain trees that do not correspond to an actual reduction.

Example 11 To see this, consider the non-confluent TRS R

f(s(x))→ f(g(x)) (9) g(x)→ x (10) g(x)→ a(f(x)) (11)

with the DTs

f](s(x))→ COM2(f
](g(x)),g](x)) (12) g](x)→ COM1(f

](x)) (13)

Chain trees do not take into account that the subterms g(x) and g](x) in the right-hand side
of (12) have to be evaluated in the same way. Thus, for the substitution σ with σ(x) = s(x),
there is a chain tree with the root ((12) | σ) and the children ((12) | id) and ((13) | σ), where
id is the identical substitution. Here the step from ((12) | σ) to ((12) | id) corresponds to a
reduction of the subterm g(s(x)) with rule (10), whereas the step from ((12) |σ) to ((13) |σ)
corresponds to a reduction of g(s(x)) with rule (11). Note that ((13) | σ) then again has a
child ((12) | id). Thus, for this example the size of chain trees can be exponential (i.e., we
have Cplx〈DT (R),DT (R),R〉(f

](sn(0))) = 2n+1−2), although the runtime complexity of R is
linear.

Thm. 12 proves that Cplx〈DT (R),DT (R),R〉(t
]) is indeed an upper bound for t’s derivation

height w.r.t. i→R, provided that t is in argument normal form. Here, a term t = f (t1, . . . , tn)
is in argument normal form iff all ti are normal forms w.r.t. R. Thus, all basic terms are in
argument normal form, but in addition, a term f (t1, . . . , tn) in argument normal form may
also have defined symbols in the ti, as long as these subterms cannot be reduced further. This
generalized form of basic terms is needed for the proof of Thm. 12.
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Theorem 12 (Cplx bounds Derivation Height) Let R be a TRS. Let t = f (t1, . . . , tn) ∈ T
be in argument normal form. Then we have dh(t, i→R) ≤ Cplx〈DT (R),DT (R),R〉(t

]). If R is
confluent, we have dh(t, i→R) = Cplx〈DT (R),DT (R),R〉(t

]).

Proof We first consider the case where dh(t, i→R) = ω . As t is in argument normal form,
there is a `1→ r1 ∈R and a substitution σ1 such that t = `1σ1

i→R r1σ1 and dh(r1σ1,
i→R)=

ω . Thus, there exists a minimal subterm r1σ1|π1 of r1σ1 such that dh(r1σ1|π1 ,
i→R) = ω and

all proper subterms of r1σ1|π1 are innermost terminating. Since σ1 instantiates all variables
with normal forms, we have π1 ∈ Posd(r1), i.e., r1σ1|π1 = r1|π1 σ1. In the infinite innermost
reduction of r1|π1 σ1, again all arguments are normalized first, leading to a term t ′ with
dh(t ′, i→R) = ω . As t ′ is in argument normal form, there is again a rule `2 → r2 ∈ R and
a substitution σ2 such that t ′ = `2σ2

i→R r2σ2 and dh(r2σ2,
i→R) = ω . Continuing in this

way, one obtains an infinite chain

(`]1→ COMn1(. . . ,r1|]π1 , . . .) | σ1), (`]2→ COMn2(. . . ,r2|]π2 , . . .) | σ2), . . .

So there is an infinite chain tree for `]1σ1 = t] and hence, Cplx〈DT (R),DT (R),R〉(t
]) = ω .

For the case that dh(t, i→R) is finite, we proceed by induction on dh(t, i→R). If
dh(t, i→R) is 0, then t is in R-normal form. Thus, t] is in normal form w.r.t. DT (R)∪R
and Cplx〈DT (R),DT (R),R〉(t

]) = 0.
Otherwise, as t is in argument normal form, there exists a rule `→ r ∈R and a substi-

tution σ such that t = `σ i→R rσ = u and

dh(t, i→R) = 1+dh(u, i→R). (14)

For a term s, we denote by s⇓ a maximal argument normal form of s, i.e., s⇓ is an argument
normal form such that s

i,>ε−→∗R s⇓ and such that for all argument normal forms s′ with s i→∗R
s′, we have dh(s′, i→R)≤ dh(s⇓, i→R). Here, “

i,>ε−→∗R” denotes innermost reductions below
the root position. By induction on u, one can easily show that

dh(u, i→R)≤ Σπ∈Posd(u) dh(u|π⇓, i→R) (15)

holds (with “=” instead of “≤” if R is confluent). As σ instantiates all variables by normal
forms, u|π = rσ |π is in normal form for all π ∈ Posd(u)\Posd(r). For such π , the fact that
u|π is in normal form implies u|π⇓= u|π and dh(u|π , i→R) = 0. Hence, from (15) we obtain

dh(u, i→R) ≤ Σπ∈Posd(u) dh(u|π⇓, i→R)

= Σπ∈Posd(u)\Posd(r) dh(u|π⇓, i→R) + Σπ∈Posd(r) dh(u|π⇓, i→R)

= Σπ∈Posd(u)\Posd(r) dh(u|π , i→R) + Σπ∈Posd(r) dh(u|π⇓, i→R)

= Σπ∈Posd(r) dh(u|π⇓, i→R). (16)

Note that dh(u|π⇓, i→R)≤ dh(u, i→R)< dh(t, i→R) for all π ∈ Posd(r). So from the induc-
tion hypothesis, (14), and (16) we obtain

dh(t, i→R) = 1+dh(u, i→R)≤ 1+Σπ∈Posd(r)Cplx〈DT (R),DT (R),R〉(u|π⇓]). (17)

Let Posd(r) = {π1, . . . ,πn}. Then there exists a chain tree for t] where the root node is
(`]→ COMn(r|]π1 , . . . ,r|

]
πn) | σ) and where the children of the root node are (maximal) chain

trees for u|π1⇓
], . . . , u|πn⇓]. The reason is that r|πi σ = u|πi and hence r|]πi σ

i→∗R u|πi⇓
] for

all i ∈ {1, . . . ,n}. So, together with (17) we have

dh(t, i→R)≤ Cplx〈DT (R),DT (R),R〉(t
])

with “=” instead of “≤” for confluent R. ut
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Compared to the weak DPs of [17–19], DTs have the advantage that they allow a
more direct adaptation of termination techniques (“DP processors”) for complexity anal-
ysis. While weak DPs also use compound symbols, they only consider the topmost defined
function symbols in right-hand sides of rules. Hence, [17–19] does not use DP concepts
when defined functions occur nested on right-hand sides (as in the m- and the first if-rule)
and thus, it cannot fully benefit from the advantages of the DP technique. Instead, [17–19]
has to impose several restrictions which are not needed in our approach (cf. the discussion in
Sect. 5.2 after Thm. 26). In contrast, the termination techniques of the DP framework can be
directly extended in order to work on DTs (i.e., in order to analyze Cplx〈DT (R),DT (R),R〉(t

])
for all basic terms t of a certain size). Using Thm. 12, this yields an upper bound for the
complexity ιR of the TRS R, cf. Thm. 16.

On the other hand, weak DPs have the advantage that they can also be used to analyze
the runtime complexity of full rewriting (whereas DTs are restricted to innermost rewriting)
and DTs may also lead to less precise results when analyzing non-confluent TRSs. As shown
in Ex. 11, there exist non-confluent TRSs where Cplx〈DT (R),DT (R),R〉(t

]) is exponentially
larger than dh(t, i→R) (in contrast to [17–19], where the step from TRSs to weak DPs does
not change the complexity). However, our main interest is in TRSs resulting from “typical”
programs, which are confluent and use an innermost evaluation strategy. Here, the step from
TRSs to DTs does not “lose” anything (i.e., one has equality in Thm. 12).

4 DT Problems

Our goal is to find out automatically how large Cplx〈D,S,R〉(t
]) could be for basic terms t

of size n. To this end, we will repeatedly replace the triple 〈D,S,R〉 by “simpler” triples
〈D′,S ′,R′〉 and examine Cplx〈D′,S ′,R′〉(t

]) instead.
This is similar to the DP framework where termination problems are represented by so-

called DP problems (consisting of a set of DPs and a set of rules) and where DP problems are
transformed into “simpler” DP problems repeatedly. For complexity analysis, we consider
“DT problems” instead of “DP problems” (our “DT problems” are similar to the “complexity
problems” of [30]). As before, the set S in a DT problem 〈D,S,R〉 denotes those DTs that
should be counted for complexity.

Definition 13 (DT Problem) Let R be a TRS, D a set of DTs, S ⊆ D. Then 〈D,S,R〉 is a
DT problem and R’s canonical DT problem is 〈DT (R),DT (R),R〉.

Thm. 12 showed the connection between the derivation height of a term and the maximal
number of nodes in a chain tree. This leads to the definition of the complexity of a DT
problem 〈D,S,R〉. It is defined as the asymptotic complexity of the function irc〈D,S,R〉
which maps any number n to the maximal number of S-nodes in any (D,R)-chain tree for
t], where t is a basic term of at most size n.

Definition 14 (Complexity of DT Problems) For a DT problem 〈D,S,R〉, its complexity
function is irc〈D,S,R〉(n) = sup{Cplx〈D,S,R〉(t

]) | t ∈ TB, |t| ≤ n}. We define the complexity
ι〈D,S,R〉 of the DT problem as ι(irc〈D,S,R〉).

Note that obviously, S1 ⊆ S2 implies ι〈D,S1,R〉 v ι〈D,S2,R〉.

Example 15 Consider R from Ex. 4 and let D = DT (R) = {(1), . . . ,(8)}. For t ∈ TB with
|t|= n, the maximal chain tree for t] has approximately n2 nodes, i.e., irc〈D,D,R〉(n)∈O(n2).
Thus, 〈D,D,R〉’s complexity is ι〈D,D,R〉=Pol2.
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Thm. 16 shows that to analyze the complexity of a TRS R, it suffices to analyze the
complexity of its canonical DT problem.

Theorem 16 (Upper bound for TRSs via Canonical DT Problems) Let R be a TRS and
let 〈D,D,R〉 be the corresponding canonical DT problem. Then we have ιR v ι〈D,D,R〉 and
if R is confluent, we have ιR = ι〈D,D,R〉.

Proof For any n ∈ N, ircR(n) = sup{dh(t, i→R) | t ∈ TB, |t| ≤ n} ≤ sup{Cplx〈D,D,R〉(t
]) |

t ∈ TB, |t| ≤ n} = irc〈D,D,R〉(n) by Thm. 12, with equality if R is confluent. Thus, ιR =
ι(ircR)v ι(irc〈D,D,R〉) = ι〈D,D,R〉 and if R is confluent, we even have ιR = ι〈D,D,R〉. ut

Now we can introduce our notion of processors which is analogous to the “DP proces-
sors” for termination [11, 12] (and related to the “complexity problem processors” in [30]).
A DT processor transforms a DT problem P to a pair (c,P′) of an asymptotic complexity
c ∈ C and a DT problem P′, such that P’s complexity is bounded by the maximum of c and
of the complexity of P′.

Definition 17 (Processor, ⊕) A DT processor PROC is a function PROC(P) = (c,P′) map-
ping any DT problem P to a complexity c ∈ C and a DT problem P′. A processor is sound
if ιP v c⊕ ιP′ . Here, “⊕” is the “maximum” function on C, i.e., for any c,d ∈ C, we define
c⊕d = d if cv d and c⊕d = c otherwise.

The following lemma about the connection between ι〈D,S,R〉 and the operation ⊕ will
be useful in the proofs later on.

Lemma 18 (Connection between ι〈D,S,R〉 and ⊕)
(a) Let f and g be functions from N to N∪{ω}. Then ι( f )⊕ ι(g) = ι( f +g).
(b) For any S1,S2 ⊆D, we have ι〈D,S1,R〉⊕ ι〈D,S2,R〉 = ι〈D,S1∪S2,R〉.

Proof For (a), ι(g)< ι( f ) implies ι( f +g) = ι( f ) and ι( f )v ι(g) implies ι( f +g) = ι(g).
For (b), let t] ∈ T ] and let m be the maximal number of nodes from S1 ∪S2 occurring

in any (D,R)-chain tree for t], i.e., Cplx〈D,S1∪S2,R〉(t
]) = m. Similarly, let m1 and m2 be

the maximal numbers of nodes from S1 resp. S2 occurring in (D,R)-chain trees for t], i.e.,
Cplx〈D,S1,R〉(t

]) = m1 and Cplx〈D,S2,R〉(t
]) = m2. When extending “≤” and “+” to N∪

{ω}, we have sup{m1,m2} ≤m≤m1 +m2, i.e., sup{Cplx〈D,S1,R〉(t
]),Cplx〈D,S2,R〉(t

])} ≤
Cplx〈D,S1∪S2,R〉(t

]) ≤ Cplx〈D,S1,R〉(t
]) +Cplx〈D,S2,R〉(t

]). So on the one hand, we have
sup{irc〈D,S1,R〉(n), irc〈D,S2,R〉(n)} ≤ irc〈D,S1∪S2,R〉(n) for all n∈N which means ι〈D,S1,R〉
⊕ ι〈D,S2,R〉 = ι(irc〈D,S1,R〉)⊕ ι(irc〈D,S2,R〉) v ι(irc〈D,S1∪S2,R〉) = ι〈D,S1∪S2,R〉. On the
other hand, we have irc〈D,S1∪S2,R〉(n)≤ irc〈D,S1,R〉(n)+ irc〈D,S2,R〉(n) for all n ∈N which
means ι〈D,S1∪S2,R〉 = ι(irc〈D,S1∪S2,R〉) v ι(irc〈D,S1,R〉 + irc〈D,S2,R〉) = ι(irc〈D,S1,R〉)⊕
ι(irc〈D,S2,R〉) = ι〈D,S1,R〉⊕ ι〈D,S2,R〉 by (a). ut

To analyze the complexity ιR of a TRS R, we start with the canonical DT problem
P0 = 〈DT (R),DT (R),R〉. Then we apply a sound processor to P0 which yields a result
(c1,P1). Afterwards, we apply another (possibly different) sound processor to P1 which
yields (c2,P2), etc. This is repeated until we obtain a solved DT problem (whose complexity
is obviously Pol0).

Definition 19 (Proof Chain, Solved DT Problem) We call a DT problem P = 〈D,S,R〉
solved if S = ∅. A proof chain is a finite sequence P0

c1
; P1

c2
; . . .

ck
; Pk ending with a

solved DT problem Pk, such that for all 0≤ i < k there exists a sound processor PROCi with
PROCi(Pi) = (ci+1,Pi+1).
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By Def. 17 and 19, for every Pi in a proof chain, ci+1⊕ . . .⊕ck is an upper bound for its
complexity ιPi . Here, the empty sum (for i = k) is defined as Pol0.

Theorem 20 (Approximating Complexity by Proof Chain) Let P0
c1
; P1

c2
; . . .

ck
; Pk be a

proof chain. Then ιP0 v c1⊕ . . .⊕ ck.

Proof The theorem can easily be proved by induction on k. ut

Thm. 16 and 20 now imply that our approach for complexity analysis is correct.

Corollary 21 (Correctness of Approach) If P0 is the canonical DT problem for a TRS R
and P0

c1
; . . .

ck
; Pk is a proof chain, then ιR v c1⊕ . . .⊕ ck.

Of course, one could also define DT processors that transform a DT problem P into a
complexity c and a set {P′1, . . . ,P′n} such that ιP v c⊕ ιP′1

⊕ . . .⊕ ιP′n . Then instead of a proof
chain one would obtain a proof tree and Cor. 21 would have to be adapted accordingly.

5 DT Processors

In this section, we present several processors to simplify DT problems automatically. To this
end, we adapt processors of the DP framework for termination.

The usable rules processor (Sect. 5.1) simplifies a problem 〈D,S,R〉 by deleting rules
from R. The reduction pair processor (Sect. 5.2) removes DTs from S, based on term orders.
In Sect. 5.3 we introduce the dependency graph, on which the leaf removal, rhs simplifica-
tion, unreachable DT removal, and knowledge propagation (Sect. 5.4) processors are based.
Finally, Sect. 5.5 adapts processors based on transformations like narrowing.

5.1 Usable Rules Processor

As in termination analysis, we can restrict ourselves to those rewrite rules that can be used
to reduce right-hand sides of DTs (when instantiating their variables with normal forms).
This leads to the notion of usable rules.

Definition 22 (Usable Rules UR [1]) For a TRS R and any symbol f , let RlsR( f ) = {`→
r | root(`) = f}. For any term t, UR(t) is the smallest set with

• UR(x) =∅ if x ∈ V and
• UR( f (t1, . . . , tn)) = RlsR( f ) ∪

⋃
`→r∈RlsR( f )UR(r)∪

⋃
1≤i≤nUR(ti)

For any set D of DTs, we define UR(D) =
⋃

s→t∈D UR(t).

So for R and DT (R) in Ex. 4 and 6, UR(DT (R)) contains just the gt- and the p-rules.
The following processor removes non-usable rules from DT problems.

Theorem 23 (Usable Rules Processor) Let 〈D,S,R〉 be a DT problem. Then the following
processor is sound: PROC(〈D,S,R〉) = (Pol0,〈D,S,UR(D)〉).

Proof We have to prove ι〈D,S,R〉 v Pol0⊕ ι〈D,S,UR(D)〉. This is equivalent to ι(irc〈D,S,R〉)
v ι(irc〈D,S,UR(D)〉). This holds, since for all S ⊆ D, we have irc〈D,S,R〉 = irc〈D,S,UR(D)〉.
The reason is that in a chain tree, variables are always instantiated with normal forms. ut
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So when applying the usable rules processor on the canonical DT problem 〈D,D,R〉 of
R from Ex. 4, we obtain 〈D,D,R1〉 where R1 are the gt- and p-rules.

The idea of applying usable rules also for complexity analysis is due to [17], which
introduced a technique similar to Thm. 23. While Def. 22 is the most basic definition of
usable rules, the processor of Thm. 23 can also be used with more sophisticated definitions
of “usable rules” (e.g., as in [12]).

5.2 Reduction Pair Processor

Using orders is one of the most important methods for termination or complexity analysis. In
the most basic approach, one tries to find a well-founded order � such that every reduction
step (strictly) decreases w.r.t. �. This proves termination and most reduction orders also
imply some complexity bound, cf. e.g. [7, 20]. However, direct applications of orders have
two main drawbacks: The obtained bounds are often far too high to be useful and there are
many TRSs that cannot be oriented strictly with standard orders amenable to automation,
cf. [30].

Therefore, the reduction pair processor of the DP framework only requires a strict de-
crease (w.r.t.�) for at least one DP, while for all other DPs and rules, a weak decrease (w.r.t.
%) suffices. Making the rules weakly decreasing ensures that one has a weak decrease when
going from one dependency pair to the next in a chain. Thus, the strictly decreasing DPs can
only occur finitely often in chains and can therefore be deleted. Afterwards one can use other
orders (or termination techniques) to solve the remaining DP problem. To adapt the reduc-
tion pair processor for complexity analysis, we have to restrict ourselves to COM-monotonic
orders. (In [17] “COM-monotonic” is called “safe”.)

Definition 24 (Reduction Pair) A reduction pair (%,�) consists of a stable monotonic
quasi-order % and a stable well-founded order�which are compatible (i.e., %◦�◦%⊆�).
An order� is COM-monotonic iff COMn(s

]
1, . . . ,s

]
i , . . . ,s

]
n)� COMn(s

]
1, . . . , t

], . . . ,s]n) for all
n ∈ N, all 1≤ i≤ n, and all s]1, . . . ,s

]
n, t] ∈ T ] with s]i � t]. A reduction pair (%,�) is COM-

monotonic iff � is COM-monotonic. For a reduction pair (%,�) and a set D of DTs, we
write D� =D∩� and D% =D∩%.

For a DT problem (D,S,R), we orient D∪R by % or�. But in contrast to the reduction
pair processor for termination, if a DT is oriented strictly, we may not remove it from D, but
only from S. So the DT is not counted anymore for complexity, but it may still be used in
reductions. We will improve this later in Sect. 5.4.

Example 25 This TRS R shows why DTs may not be removed from D. (An alternative such
example is shown in [9, Ex. 11].)

f(0)→ 0 f(s(x))→ f(id(x)) id(0)→ 0 id(s(x))→ s(id(x))

Let D=DT (R) = {f](0)→ COM0, f
](s(x))→ COM2(f

](id(x)), id](x)), id](0)→ COM0,
id](s(x))→ COM1(id

](x))}, where UR(D) are just the id-rules. For the DT problem 〈D,S,
UR(D)〉 with S = D, there is a linear polynomial interpretation [·] that orients the first two
DTs strictly and the remaining DTs and usable rules weakly: [0] = 0, [s](x) = x+1, [id](x) =
x, [f]](x) = x+ 1, [id]](x) = 0, [COM0] = 0, [COM1](x) = x, [COM2](x,y) = x+ y. If one re-
moved the first two DTs from D, there would be another linear polynomial interpretation
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that orients the remaining DTs strictly (e.g., by [id]](x) = x+ 1). Then, one would falsely
conclude that the whole TRS has linear runtime complexity.

Hence, the first two DTs should only be removed from S, not from D. This results in
〈D,S ′,UR(D)〉 where S ′ consists of the last two DTs. These DTs can occur quadratically
often in reductions with D∪UR(D). Hence, when trying to orient S ′ strictly and the remain-
ing DTs and usable rules weakly, we have to use a quadratic polynomial interpretation (e.g.,
[0] = 0, [s](x) = x + 2, [id](x) = x, [f]](x) = x2, [id]](x) = x + 1, [COM0] = 0, [COM1](x) =
x, [COM2](x,y) = x+y). Thus, now we (correctly) conclude that the TRS has quadratic run-
time complexity (indeed, dh(f(sn(0)), i→R) = (n+1)·(n+2)

2 ).

So when applying the reduction pair processor to 〈D,S,R〉, we get (c,〈D,S \D�,
R〉). Here, c is an upper bound for the number of D�-steps in innermost reductions with
D∪R.

Theorem 26 (Reduction Pair Processor) Let P = 〈D,S,R〉 be a DT problem and (%,
�) be a COM-monotonic reduction pair. Let D ⊆ %∪�, R ⊆ %, and c w ι(irc�) for the
function irc�(n) = sup{dh(t],�) | t ∈ TB, |t| ≤ n}. Then the following processor is sound:
PROC(〈D,S,R〉) = (c, 〈D, S \D�,R〉).

Proof To prove soundness, we have to show that ι〈D,S,R〉 v c⊕ ι〈D,S\D�,R〉 holds. It
suffices to show ι〈D,D�,R〉 v ι(irc�), since then ι〈D,S,R〉 v ι〈D,S∪D�,R〉 = ι〈D,D�,R〉 ⊕
ι〈D,S\D�,R〉 v ι(irc�)⊕ ι〈D,S\D�,R〉 v c⊕ ι〈D,S\D�,R〉 by Lemma 18 (b).

To prove ι〈D,D�,R〉 v ι(irc�), let s ∈ TB be a basic term and consider an arbitrary
innermost (D∪R)-reduction sequence starting with s]. All terms in such a reduction se-
quence are of the form C[t]1, . . . , t

]
n] for a context C consisting only of compound symbols

and t]1, . . . , t
]
n ∈ T ].

As � is COM-monotonic, all D-steps in such a reduction sequence take place on mono-
tonic positions. So if u i→D� v is a rewrite step in an innermost (D∪R)-reduction of s], then
u� v. On the other hand, % is monotonic, too. Hence, u→D%∪R v implies u % v. Now let

s] = s0
i→ν0 t0 i→∗R s1

i→ν1 t1 i→∗R s2 . . .

be a (finite or infinite) innermost (D∪R)-reduction, where νi ∈D for all i. Then

s] = s0 ·�0 t0 % s1 ·�1 t1 % s2 . . .

holds. Here “·�i” is “�” if νi ∈ D� and “%” otherwise. Let n1 < n2 < .. . be the indexes
where ·�n j = �. For each n j we have sn j � tn j . As % ◦�◦% ⊆ �, we obtain s] � tn1 �
tn2 � . . . and therefore dh(s],�) > dh(tn1 ,�) > dh(tn2 ,�) > .. . or dh(s],�) = ω . Hence,
irc�(|s]|) is an upper bound on the number of D�-steps in any innermost (D∪R)-reduction
of s].

Moreover, Cplx〈D,S,R〉(s
]) is the maximal number of S-steps in any innermost (D ∪

R)-reduction of s]. Hence, Cplx〈D,D�,R〉(s
]) ≤ irc�(|s]|) for all s ∈ TB. This implies

irc〈D,D�,R〉(n)≤ irc�(n) for all n and hence, ι〈D,D�,R〉 = ι(irc〈D,D�,R〉)v ι(irc�). ut

Note that our reduction pair processor is much closer to the original processor of the
DP framework than [17]. In [17, Cor. 18], all (weak) DPs and the usable rules have to be
oriented strictly in one go with the same order and this order has to be monotonic on all
symbols. (In [19], the authors weaken this to monotonicity on only those positions below
which rewriting can take place.) In [17, Thm. 3], again all (weak) DPs and the usable rules
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have to be oriented strictly in one go, but with two different orders. However, here one
is restricted to non-duplicating TRSs. The idea of not removing strictly oriented rules but
only avoiding to count them for complexity is also used in [30], i.e., here we integrate an
approach of [30] as a processor. However, [30] treats derivational complexity instead of
(innermost) runtime complexity, and it operates directly on TRSs and not on DPs or DTs.
Therefore, [30] has to impose stronger restrictions (it requires � to be monotonic on all
symbols) and it cannot use other DP- resp. DT-based processors.

As noted by [25], the condition “cw ι(irc�)” for the function irc�(n) = sup{dh(t],�) |
t ∈ TB, |t| ≤ n} in Thm. 26 can be weakened by replacing dh(t],�) with dh(t],�∩ i→D/R),
where →D/R =→∗R ◦→D ◦→∗R and i→D/R is the restriction of →D/R where in each
rewrite step with→R or→D , the arguments of the redex must be in (D∪R)-normal form,
cf. [3]. Such a weakening is required to use reduction pairs based on path orders where a
term t] may start �-decreasing sequences of arbitrary (finite) length.

To automate Thm. 26, we need reduction pairs (%,�) where an upper bound c for
ι(irc�) is easy to compute. This holds for reduction pairs based on polynomial interpre-
tations with coefficients from N (which are well suited for automation). For COM-monoto-
nicity, we restrict ourselves to complexity polynomial interpretations (CPIs) [·] where
[COMn](x1, . . . ,xn) = x1 + . . .+ xn for all n ∈ N. This is the “smallest” polynomial which
is monotonic in x1, . . . ,xn. As COMn only occurs on right-hand sides of inequalities, [COMn]
should be as small as possible.

Moreover, a CPI interprets constructors f ∈ Σ \ Σd by polynomials [ f ](x1, . . . ,xn) =
a1x1 + . . .+ anxn + b where b ∈ N and ai ∈ {0,1}. This ensures that the mapping from
constructor ground terms t ∈ T (Σ \Σd ,∅) to their interpretations is in O(|t|), cf. [7, 20].
Note that the interpretations in Ex. 25 were CPIs.

Thm. 27 shows how such interpretations can be used for the processor of Thm. 26. Here,
as an upper bound c for ι(irc�), one can simply take Polm, where m is the maximal degree
of the polynomials in the interpretation.

Theorem 27 (Reduction Pair Processor with Polynomial Interpretations) Let P = 〈D,
S,R〉 be a DT problem and let % and � be induced by a CPI [·]. Let m ∈ N be the maximal
degree of all polynomials [ f ]], for all f ] with f ∈ Σd . Let D ⊆%∪� and R⊆%. Then the
following processor is sound: PROC(〈D,S,R〉) = (Polm, 〈D, S \D�,R〉).

Proof CPIs are obviously COM-monotonic. Hence, it remains to prove that Polm w ι(irc�)
holds. Let [·]0 be a variant of the polynomial interpretation which maps every variable to 0.
Then we have dh(t,�)≤ [t]0 for all terms t. Thus,

irc�(n)≤ sup{[t]]0 | t ∈ TB and |t| ≤ n}. (18)

Let bmax be the maximum of all [ f ](0, . . . ,0), for all constructors f ∈ Σ \Σd . Then for
every term s containing only constructors and variables, we obtain [s]0 ≤ bmax · |s|, where |s|
is again the size of s. Hence, there exists a number k ∈ N such that for all t ∈ TB we have

[t]]0 ≤ k · [ f ]](|t|, . . . , |t|), where f ] = root(t]). (19)

To see this, note that for t = f (t1, . . . , tn) ∈ TB we have

[t]]0 = [ f ]]([t1]0, . . . , [tn]0)
≤ [ f ]](bmax · |t1|, . . . ,bmax · |tn|)
≤ [ f ]](bmax · |t|, . . . ,bmax · |t|)
≤ bm

max · [ f ]](|t|, . . . , |t|), since the degree of [ f ]] is at most m
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Hence,

irc�(n) ≤ sup{[t]]0 | t ∈ TB and |t| ≤ n} by (18)
≤ k · [ f ]](n, . . . ,n) by (19).

Since the polynomials [ f ]] have at most degree m, we have ι(irc�)v Polm. ut

Example 28 This TRS [1] illustrates Thm. 27, where q(x,y,y) computes b x
yc.

q(0,s(y),s(z))→ 0 q(s(x),s(y),z)→ q(x,y,z) q(x,0,s(z))→ s(q(x,s(z),s(z)))

The dependency tuples D of this TRS are

q](0,s(y),s(z))→ COM0 (20) q](s(x),s(y),z)→ COM1(q
](x,y,z)) (21)

q](x,0,s(z))→ COM1(q
](x,s(z),s(z))) (22)

As the usable rules are empty, Thm. 23 transforms the canonical DT problem to 〈D,D,∅〉.
Consider the CPI [0] = 0, [s](x) = x + 1, [q]](x,y,z) = x + 1, [COM0] = 0, [COM1](x) =
x. With the corresponding reduction pair, the DTs (20) and (21) are strictly decreasing
and (22) is weakly decreasing. Moreover, the degree of [q]] is 1. Hence, the reduction pair
processor returns (Pol1,〈D,{(22)},∅〉). However, no reduction pair based on CPIs orients
(22) strictly and both (20) and (21) weakly. So for the moment we cannot simplify this
problem further.

Apart from polynomial interpretations, our reduction pair processor could of course
also use matrix interpretations [9, 22, 24, 26, 29], polynomial path orders (POP∗ [3]), etc.
For POP∗, we would extend C by a complexity Pol∗ for polytime computability, where
Poln < Pol∗ < ? for all n ∈ N.

5.3 Dependency Graph Processors

As in the DP framework for termination, it is useful to have a finite representation of (a
superset of) all possible chain trees.

Definition 29 (Dependency Graph) Let D be a set of DTs and R a TRS. The (D,R)-
dependency graph is the directed graph whose nodes are the DTs in D and there is an edge
from s→ t to u→ v in the dependency graph iff there is a chain tree with an edge from a
node (s→ t | σ1) to a node (u→ v | σ2).

Every (D,R)-chain corresponds to a path in the (D,R)-dependency graph. While de-
pendency graphs are not computable in general, there are several techniques to compute
over-approximations of dependency graphs for termination, cf. e.g. [1]. These techniques
can also be applied for (D,R)-dependency graphs.

Example 30 For the TRS R from Ex. 4, we obtain the following (D,R1)-dependency graph,
where D = DT (R) and R1 are the gt- and p-rules.
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m](x,y)→ COM2(if
](gt(x,y),x,y),gt](x,y)) (1)

if](false,x,y)→ COM0 (3)if](true,x,y)→ COM2(m
](p(x),y),p](x)) (2)

p](0)→ COM0 (4) p](s(n))→ COM0 (5)

gt](0,k)→ COM0 (6)

gt](s(n),0)→ COM0 (7)

gt](s(n),s(k))→ COM1(gt
](n,k)) (8)

For termination analysis, one can regard strongly connected components of the graph
separately and ignore nodes that are not on cycles. Such a strong form of modularity is not
possible for complexity analysis: If one regards the DTs D′ = {(1),(2)} and D′′ = {(8)}
on the two SCCs of the graph separately, then both resulting DT problems 〈D′,D′,R1〉
and 〈D′′,D′′,R1〉 have linear complexity. However, this allows no conclusions on the com-
plexity of 〈D,D,R1〉 (which is quadratic). Nevertheless, it is often possible to remove DTs
s→ t that are leaves (i.e., s→ t has no successors in the dependency graph). This yields
〈D1,D1,R1〉, where D1 = {(1),(2),(8)}.

Theorem 31 (Leaf Removal Processor) Let 〈D,S,R〉 be a DT problem and let s→ t ∈D
be a leaf in the (D,R)-dependency graph. By Pre(s→ t) ⊆ D we denote the predecessors
of s→ t, i.e., Pre(s→ t) consists of all DTs u→ v where there is an edge from u→ v to
s→ t in the (D,R)-dependency graph. If s→ t 6∈ S or Pre(s→ t) ⊆ S, then the following
processor is sound: PROC(〈D,S,R〉) = (Pol0,〈D \{s→ t},S \{s→ t},R〉).

Proof Let T be an arbitrary (D,R)-chain tree and let T ′ result from removing all leaves
marked with s→ t. Since s→ t is a leaf in the dependency graph, it cannot occur in inner
nodes of the chain tree T . Hence, T ′ is a (D \ {s→ t},R)-chain tree. If s→ t /∈ S, we
obviously have |T |S = |T ′|S\{s→t}. Hence, ι〈D,S,R〉 = ι〈D\{s→t},S\{s→t},R〉 and thus, the
processor is sound.

Otherwise, if Pre(s→ t) ⊆ S, let k be the maximal index of the compound symbols
COMk occurring in Pre(s→ t). Then T can have at most 1+ k · |T |Pre(s→t) nodes labeled
with s→ t and hence |T |S ≤ |T |S\{s→t}+ 1+ k · |T |Pre(s→t) ≤ 1+(k+ 1) · |T ′|S\{s→t}. So
for any u ∈ TB we have Cplx〈D,S,R〉(u

]) ≤ 1 + (k + 1) ·Cplx〈D\{s→t},S\{s→t},R〉(u
]) and

hence ι〈D,S,R〉 = ι〈D\{s→t},S\{s→t},R〉, which proves the soundness of the processor. ut

Note that a similar argument can also be used to remove whole SCCs without a succes-
sor. But since this is only possible if none of the DTs in the SCC is in S, this is rarely useful
in practice.

While the above processor only removes DTs that are leaves of the dependency graph,
the following processor can also be used to simplify non-leaf DTs by removing subterms
from their right-hand sides. More precisely, if s→ COMn(t1, . . . , tn) is a DT where ti never
gives rise to edges in chain trees, then ti can be removed from the right-hand side COMn(t1,
. . . , tn). In the following processor, for any set S of DTs, let S[s→t / s→t ′] denote the result
of replacing s→ t by s→ t ′. So if s→t ∈ S, then S[s→t / s→t ′] = (S \{s→t})∪{s→t ′}
and otherwise, S[s→ t / s→ t ′] = S.

Theorem 32 (Rhs Simplification Processor) Let 〈D,S,R〉 be a DT problem and let s→
t ∈ D with t = COMn(t1, . . . , tn). Let I = {i1, . . . , in′} with 1 ≤ i1 < .. . < in′ ≤ n, such that
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I contains all i where tiσ i→∗R uτ holds for some u → v ∈ D and some substitutions σ

and τ where sσ and uτ are in normal form w.r.t. R. Let t ′ = COMn′(ti1 , . . . , tin′ ), D
′ =

D[s→ t / s→ t ′], and S ′ = S[s→ t / s→ t ′]. Then the processor with PROC(〈D,S,R〉) =
(Pol0,〈D′,S ′,R〉) is sound.

Proof Consider an arbitrary (D,R)-chain tree T . We show that replacing every occurrence
of s→ t by s→ t ′ in T yields a (D′,R)-chain tree T ′. As |T |S ≤ |T ′|S ′ , we have ι〈D,S,R〉 v
ι〈D′,S ′,R〉 and hence, the processor is sound.

Let (s→ COMn(t1, . . . , tn) | σ) be a node in T with children (u1→ v1 | τ1), . . . , (uk →
vk | τk). Then there exist pairwise different i1, . . . , ik ∈ {1, . . . ,n} with ti j σ

i→∗R u jτ j for all
j ∈ {1, . . . ,k}. We have i1, . . . , ik ∈ I and hence, replacing s→ COMn(t1, . . . , tn) by s→ t ′

yields a (D′,R)-chain tree. ut

Example 33 To illustrate the leaf removal and rhs simplification processors, consider the
DT problem 〈{(23),(24)},{(23),(24)},∅〉 with the following dependency graph.

f](s(x))→ COM3(f
](x),g](x),h](x)) (23) g](x)→ COM1(h

](x)) (24)

As Pre((24)) = {(23)} ⊆ S, the leaf removal processor removes (24) and returns 〈{(23)},
{(23)},∅〉. The rhs simplification processor then removes the right-hand sides g](x) and
h](x) from (23), which results in the DT problem 〈{(25)},{(25)},∅〉 with

f](s(x))→ COM1(f
](x)). (25)

Note that the restrictions on S for the leaf removal processor are necessary for the sound-
ness.2 Consider the variant P = 〈{(23),(24)},{(24)},∅〉 of the DT problem above, which
has a complexity of ιP = Pol1. Here, neither (24) 6∈ S nor Pre((24)) ⊆ S holds. If we re-
moved (24) nevertheless, we would end up with 〈{(23)},∅,∅〉, which has the complexity
Pol0.

In [18, 19], instead of using techniques like the rhs simplification processor, the authors
exploit dependency graphs by applying path detection (or path analysis) to simplify the
complexity analysis. We also experimented with an additional processor performing path
detection, but in our framework, this did not improve the analysis. The reason is that while
path detection would allow the removal of certain DTs from D, in most cases it does not
harm to keep these DTs in D. This is because our reduction pair processor can usually
easily orient these DTs weakly by interpreting their tuple symbols f ] by constants [ f ]].

Finally, the following processor removes DTs that cannot be “reached” by evaluations
starting with basic terms. As a simple example consider a TRS with the rules f(s(g(x)))→
f(g(x)) and g(a)→ a. The DT f](s(g(x)))→ COM2(f

](g(x)),g](x)) resulting from the first
rule cannot occur in any chain tree for a term s] with s ∈ TB, since its left-hand side con-
tains the defined symbol g. Thus, the DT can be removed from the canonical DT problem.
In this way, one can detect that this TRS has constant (and not linear) innermost runtime
complexity.

Theorem 34 (Unreachable DT Removal Processor) Let P = 〈D,S,R〉 be a DT problem.
Let M⊆D be the set of all DTs whose left-hand side does not contain any defined function
symbol from Σd . Let N ⊆D be the set containing M and all DTs which are reachable from
M in the (D,R)-dependency graph. Then the following processor is sound: PROC(P) =
(Pol0,〈N,S ∩N,R〉).

2 Thus, Thm. 31 is a corrected version of [27, Thm. 28], where these restrictions were missing.
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Proof Let T be a (D,R)-chain tree for s] where s ∈ TB. Then the root node of T is labeled
with (u→ v | σ) where uσ = s]. As s] does not contain any defined symbols from Σd , we
have u→ v ∈M.

By the definition of the dependency graph, all DTs in the nodes of T are reachable from
u→ v in the (D,R)-dependency graph. Hence, all these DTs are contained in N .

Thus, Cplx〈D,S,R〉(s
]) = Cplx〈N,S∩N,R〉)(s

]), which implies the soundness of PROC.
ut

5.4 Knowledge Propagation

In the DP framework for termination, the reduction pair processor removes “strictly de-
creasing” DPs. While this is unsound for complexity analysis (cf. Ex. 25), we now show
that by an appropriate extension of DT problems, one can obtain a similar processor also for
complexity analysis.

Lemma 35 shows that we can estimate the complexity of a DT problem if we know the
complexity of all its predecessors in the dependency graph. The reason is that in any chain
tree, the number of occurrences of a DT in the tree is bounded by the number of occurrences
of its predecessors.

Lemma 35 (Complexity Bounded by Predecessors) Let 〈D,S,R〉 be a DT problem and
s→ t ∈D. Then ι〈D,{s→t},R〉 v ι〈D,Pre(s→t),R〉.

Proof Let k be the maximal index of the compound symbols COMk occurring in Pre(s→ t)
and let T be a (D,R)-chain tree. Thus, we have |T |{s→t} ≤ 1+k · |T |Pre(s→t), which implies
Cplx〈D,{s→t},R〉(u

]) ≤ 1+ k ·Cplx〈D,Pre(s→t),R〉(u
]) for any u ∈ TB. Hence, ι〈D,{s→t},R〉 v

ι〈D,Pre(s→t),R〉. ut

q](s(x),s(y),z)→ COM1(q
](x,y,z)) (21)

q](x,0,s(z))→ COM1(q
](x,s(z),s(z))) (22)

Example 36 Consider the TRS from Ex.
28. By usable rules and reduction pairs,
we obtained 〈D, {(22)},∅〉 for D= {(20),
(21),(22)}. The leaf removal processor
yields 〈D′, {(22)},∅〉 with D′ = {(21),
(22)}. Consider the the (D′,∅)-dependency graph above. We have ι〈D′,{(22)},∅〉 v
ι〈D′,{(21)},∅〉 by Lemma 35, since (21) is the only predecessor of (22). Thus, the complexity
of 〈D′, {(22)},∅〉 does not matter for the overall complexity, if we can guarantee that we
have already taken the complexity of 〈D′, {(21)},∅〉 into account.

Therefore, we now extend the definition of DT problems by a set K of DTs with “known”
complexity, i.e., the complexity of the DTs in K has already been taken into account. So a
processor only needs to estimate the complexity of a set of DTs correctly if their complexity
is higher than the complexity of the DTs in K. Otherwise, the processor may return an
arbitrary result. To this end, we introduce a “subtraction” operation � on complexities from
C.

Definition 37 (Extended DT Problems, �) For c,d,∈ C, let c�d = c if d < c and c�d =
Pol0 if c v d. Let R be a TRS, D a set of DTs, and S,K ⊆ D. Then 〈D,S,K,R〉 is
an extended DT problem and 〈DT (R),DT (R),∅,R〉 is the canonical extended DT prob-
lem for R.3 We define the complexity of an extended DT problem to be γ〈D,S,K,R〉 =

3 Note that we cannot always assume that K =D \S, i.e., that we have already taken the complexity of
all DTs from D \S into account. In particular the narrowing processor of Thm. 43 can yield DT problems
〈D,S,K,R〉 where S ∪K 6=D.
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ι〈D,S,R〉� ι〈D,K,R〉 and also use γ instead of ι in the soundness condition for processors. So
on extended DT problems, a processor with PROC(P) = (c,P′) is sound if γP v c⊕ γP′ . An
extended DT problem 〈D,S,K,R〉 is solved if S =∅.

So for K = ∅, the definition of “complexity” for extended DT problems is equivalent
to complexity for ordinary DT problems, i.e., γ〈D,S,∅,R〉 = ι〈D,S,R〉. Cor. 38 states that our
approach is still correct for extended DT problems.

Corollary 38 (Correctness) If P0 is the canonical extended DT problem for a TRS R and
P0

c1
; . . .

ck
; Pk is a proof chain, then ιR = γP0 v c1⊕ . . .⊕ ck.

The following lemma shows the connection between ι〈D,S,R〉 and �.

Lemma 39 (Connection between ι〈D,S,R〉 and �)
(a) For any c,d,e ∈ C, we have c�d v e iff cv d⊕ e.
(b) For any S1,S2 ⊆D, we have ι〈D,S1,R〉� ι〈D,S2,R〉 v ι〈D,S1\S2,R〉.

Proof For (a), if c v d, we have both c� d = Pol0 v e and c v d v d⊕ e. Otherwise, let
d < c. If d v e, we have c� d = c v e iff c v d⊕ e = e. If e < d, then d < c implies that
c�d = cv e is false. Similarly, then cv d⊕ e = d is also false.

For (b), we obtain ι〈D,S1,R〉 � ι〈D,S2R〉 v ι〈D,S1\S2,R〉 iff ι〈D,S1,R〉 v ι〈D,S2,R〉 ⊕
ι〈D,S1\S2,R〉 by (a). By Lemma 18 (a), this is equivalent to ι〈D,S1,R〉 v ι〈D,S2∪(S1\S2),R〉.
As S1 ⊆ S2∪ (S1 \S2), this is obviously true. ut

Now we introduce a processor which makes use of K. It moves a DT s→ t from S to K
whenever the complexity of all predecessors of s→ t in the dependency graph has already
been taken into account. So in particular, this means that nodes without predecessors (i.e.,
“roots” of the dependency graph that are not in any cycle) can always be moved from S to
K.

Theorem 40 (Knowledge Propagation Processor) Let 〈D,S,K,R〉 be an extended DT
problem, s→ t ∈ S, and Pre(s→ t)⊆K. Then the following processor is sound: PROC(〈D,
S,K,R〉) = (Pol0, 〈D, S \{s→ t},K∪{s→ t},R〉).

Proof We have to show γ〈D,S,K,R〉 v γ〈D,S\{s→t},K∪{s→t},R〉. By the definition of γ , this is
equivalent to

ι〈D,S,R〉� ι〈D,K,R〉 v ι〈D,S\{s→t},R〉� ι〈D,K∪{s→t},R〉. (26)

From Lemma 35, we have ι〈D,{s→t},R〉 v ι〈D,Pre({s→t}),R〉 v ι〈D,K,R〉. Hence, Lemma 18
(b) implies ι〈D,K∪{s→t},R〉 = ι〈D,K,R〉⊕ ι〈D,{s→t},R〉 = ι〈D,K,R〉. Thus for (26), it suffices to
show

ι〈D,S,R〉� ι〈D,K∪{s→t},R〉 v ι〈D,S\{s→t},R〉� ι〈D,K∪{s→t},R〉. (27)

We consider two cases: If ι〈D,{s→t},R〉 < ι〈D,S,R〉, then ι〈D,S,R〉 = ι〈D,S,R〉� ι〈D,{s→t},R〉 v
ι〈D,S\{s→t},R〉 by Lemma 39 (b). Otherwise, ι〈D,S,R〉 v ι〈D,{s→t},R〉 v ι〈D,K∪{s→t},R〉 and
thus ι〈D,S,R〉� ι〈D,K∪{s→t},R〉 = Pol0. In both cases, the required inequality (27) follows.

ut

Before we can illustrate the knowledge propagation processor, we have to adapt the pre-
vious processors to extended DT problems. The adaptation of the usable rules, leaf removal,
rhs simplification, and unreachable DT removal processors is straightforward. But now the
reduction pair processor does not only delete DTs from S, but moves them to K. The reason
is that the complexity of these DTs is bounded by the complexity value c ∈ C returned by
the processor. (Of course, the special case of the reduction pair processor with polynomial
interpretations of Thm. 27 can be adapted analogously.)
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Theorem 41 (Processors for Extended DT Problems) Let P = 〈D,S,K,R〉 be an ex-
tended DT problem. Then the following processors are sound.

• The usable rules processor: PROC(P) = (Pol0,〈D,S,K,UR(D)〉).
• The leaf removal processor: PROC(P) = (Pol0,〈D \ {s → t},S \ {s → t},K \ {s →

t},R〉) if s→ t is a leaf in the (D,R)-dependency graph, and s→ t 6∈ S or Pre(s→
t)⊆ S ∪K.

• The rhs simplification processor: PROC(P)=(Pol0,〈D′,S ′,K[s→t / s→t ′],R〉) for D′,
S ′, s→ t, and t ′ as defined in Thm. 32.

• The unreachable DT removal processor: PROC(P) = (Pol0,〈N,S ∩N,K∩N,R〉) for
N as defined in Thm. 34.

• The reduction pair processor: PROC(P) = (c, 〈D, S \D�,K∪D�,R〉), if (%,�) is a
COM-monotonic reduction pair, D ⊆ %∪�, R ⊆ %, and c w ι(irc�) for the function
irc�(n) = sup{dh(t],�) | t ∈ TB, |t| ≤ n}.

Proof The soundness of the usable rules processor follows as in Thm. 23.
For the leaf removal processor, let D′=D\{s→ t}, S ′= S \{s→ t}, and K′=K\{s→

t}. Note that ι〈D′,K′,R〉 v ι〈D,K,R〉 holds. We distinguish two cases.

• s→ t 6∈ S: We have ι〈D,S,R〉 = ι〈D′,S ′,R〉, hence γ〈D,S,K,R〉 v γ〈D′,S ′,K′,R〉 follows by
Lemma 35.

• Pre(s → t) ⊆ S ∪K: Remember that ι〈D,{s→t},R〉 v ι〈D′,Pre(s→t),R〉 holds. Thus, we
have ι〈D,{s→t},R〉 v ι〈D′,S ′∪K′,R〉 = ι〈D′,S ′,R〉⊕ ι〈D′,K′,R〉 by Lemma 18 (b) and hence,
ι〈D,{s→t},R〉 v ι〈D′,S ′,R〉 or ι〈D,{s→t},R〉 v ι〈D′,K′,R〉. First consider the case ι〈D,{s→t},R〉
v ι〈D′,S ′,R〉. Then ι〈D,S,R〉 = ι〈D′,S ′,R〉 and hence, γ〈D,S,K,R〉 v γ〈D′,S ′,K′,R〉. Other-
wise, we have ι〈D,{s→t},R〉 6v ι〈D′,S ′,R〉, i.e., ι〈D′,S ′,R〉 < ι〈D,{s→t},R〉 v ι〈D′,K′,R〉 and
therefore

ι〈D,S,R〉 = ι〈D′,S ′,R〉⊕ ι〈D,{s→t},R〉 v ι〈D′,K′,R〉 v ι〈D,K,R〉.

But then γ〈D,S,K,R〉 = Pol0 and every processor is correct on such a problem.

The soundness of the rhs simplification and the unreachable DT removal processor fol-
low as in Thm. 32 and 34, respectively.

For the reduction pair processor, we have to show γP v c⊕γ〈D,S\D�,K∪D�,R〉. If γP v c,
then this is obviously true. Now consider c < γP. We have to prove γP v γ〈D,S\D�,K∪D�,R〉,
which means ι〈D,S,R〉� ι〈D,K,R〉 v ι〈D,S\D�,R〉� ι〈D,K∪D�,R〉. For this, it suffices to show
(i) ι〈D,S,R〉 v ι〈D,S\D�,R〉 and (ii) ι〈D,K∪D�,R〉 < ι〈D,S,R〉.

We first prove (i). As c < γP implies γP 6= Pol0, we have γP = ι〈D,S,R〉 and therefore
c < ι〈D,S,R〉. Moreover, from the proof of Thm. 26 we have ι〈D,D�,R〉 v ι(irc�)v c. Hence,
ι〈D,S,R〉 = ι〈D,S,R〉� cv ι〈D,S,R〉� ι〈D,D�,R〉 v ι〈D,S\D�,R〉, using Lemma 39 (b) for the
last inequality.

Now we prove (ii). From Lemma 18 (b) and ι〈D,D�,R〉 v c we have

ι〈D,K∪D�,R〉 = ι〈D,K,R〉⊕ ι〈D,D�,R〉 v ι〈D,K,R〉⊕ c. (28)

Note that γP 6= Pol0 implies ι〈D,K,R〉 < ι〈D,S,R〉. Together with c < ι〈D,S,R〉 this implies
ι〈D,K,R〉⊕ c < ι〈D,S,R〉 and hence (ii) follows with (28). ut
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Example 42 Reconsider the TRS R for division from Ex. 28. Starting with its canonical
extended DT problem, we now obtain the following proof chain.

〈{(20),(21),(22)}, {(20),(21),(22)}, ∅, R〉
Pol0
; 〈{(21),(22)}, {(21),(22)}, ∅, R〉 (leaf removal)
Pol0
; 〈{(21),(22)}, {(21),(22)}, ∅, ∅〉 (usable rules)
Pol1
; 〈{(21),(22)}, {(22)}, {(21)}, ∅〉 (reduction pair)
Pol0
; 〈{(21),(22)}, ∅, {(21),(22)}, ∅〉 (knowledge propag.)

For the last step we use Pre((22)) = {(21)}, cf. Ex. 36. Note that the last DT problem is
solved. Thus, ιR v Pol0⊕Pol0⊕Pol1⊕Pol0 = Pol1, i.e., R has linear complexity.

5.5 Transformation Processors

To increase power, the DP framework for termination analysis has several processors which
transform a DP into new ones (by “narrowing”, “rewriting”, “instantiation”, or “forward
instantiation”) [12]. We now show how to adapt such processors for complexity analysis.
For reasons of space, we only present the narrowing processor (the other processors can be
adapted in a similar way).

For an extended DT problem 〈D,S,K,R〉, let s→ t ∈ D with t = COMn(t1, . . . , ti, . . . ,
tn). For each ti, we now define its narrowing substitutions and narrowing results. Note that if
s→ t is followed by another DT u→ v in a chain, then there is a reduction tiσ i→∗R uτ . The
idea of the narrowing processor is to perform the first step of this reduction already directly
on the DT s→ t. Thus, whenever a subterm ti|π /∈ V of ti unifies with the left-hand side of a
(variable-renamed) rule `→ r ∈R using an mgu µ where sµ is in R-normal form, then µ is
called a narrowing substitution of ti and the corresponding narrowing result is w = ti[r]π µ .4

Moreover, if there exists a (variable-renamed) u→ v ∈ D where ti and u have an mgu
µ and both sµ and uµ are in R-normal form, then the reduction tiσ i→∗R uτ could also be
performed in zero steps. So in this case, µ is an additional narrowing substitution of ti and
the corresponding narrowing result is tiµ .

If µ1, . . . ,µd are all narrowing substitutions of ti with the corresponding narrowing re-
sults w1, . . . ,wd , then s→ t can be replaced by sµ j → COMn(t1µ j, . . . , ti−1µ j, w j, ti+1µ j,
. . . , tnµ j) for all 1≤ j ≤ d.

However, there could be a tk (with k 6= i) which was involved in a chain (i.e., tkσ
i→∗R uτ

for some u→ v∈D and some σ ,τ), but this chain is no longer possible when instantiating tk
to tkµ1, . . . , tkµd . We say that tk is captured by µ1, . . . ,µd if for each narrowing substitution
ρ of tk, there is a µ j that is more general (i.e., ρ = µ j ρ ′ for some substitution ρ ′). The
narrowing processor has to add another DT s→ COMm(tk1 , . . . , tkm) where tk1 , . . . , tkm are all
terms from t1, . . . , tn which are not captured by the narrowing substitutions µ1, . . . ,µd of ti.

This leads to the following processor. Here, we extend the notation introduced in Thm.
32 in order to replace a DT s→ t by a set M of DTs. For any sets D,M of DTs, D[s→t /M]
denotes the result of replacing s→ t by the DTs in M. So if s→t ∈D, then D[s→t /M] =
(DT \{s→ t})∪M and otherwise, D[s→ t /M] =D.

Theorem 43 (Narrowing Processor) Let P= 〈D,S,K,R〉 be an extended DT problem and
let s→ t ∈D with t = COMn(t1, . . . , ti, . . . , tn). Let µ1, . . . ,µd be the narrowing substitutions

4 This definition of “narrowing substitutions” and “results” is a corrected version of the one in [27].
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of ti with the corresponding narrowing results w1, . . . ,wd , where d ≥ 0. Let tk1 , . . . , tkm be
the terms from t1, . . . , tn that are not captured by µ1, . . . ,µd , where k1, . . . ,km are pairwise
different. We define

M= {sµ j → COMn(t1µ j, . . . , ti−1µ j, w j, ti+1µ j, . . . , tnµ j) | 1≤ j ≤ d}
∪ {s → COMm(tk1 , . . . , tkm)}.

Then the following processor is sound: PROC(P) = (Pol0,〈D′,S ′,K′,R〉), where D′ =
D[s→ t / M] and S ′ = S[s→ t / M]. K′ results from K by removing s→ t and all DTs
that are reachable from s→ t in the (D,R)-dependency graph.

Proof W.l.o.g. let M and D be disjoint (otherwise, we apply a variable renaming on one
of them). Given a (D,R)-chain tree T , we construct a (D′,R)-chain tree T ′ by repeatedly
replacing every node of the form (s→ t | σ) by a new node of the form (sµ → t ′ | σ ′) with
sµ→ t ′ ∈M. This implies |T |{s→t} = |T ′|M and for any DT u→ v /∈ {s→ t}∪M, we have
|T |{u→v} = |T ′|{u→v}. However, we have to show the following two statements in order to
ensure that we still obtain a chain tree:

(A) Relation to predecessor: If (s→ t |σ) was the root node of the chain tree for sσ , then the
new node should also be the root node of a chain tree for sσ , i.e., we need sσ = sµσ ′.
Otherwise, if (s→ t | σ) had a predecessor (p→ COMk(q1, . . . ,qk) | ρ) with q jρ

i→∗R
sσ , then the same relation should also hold for the new node (sµ→ t ′ | σ ′), i.e., we need
q jρ

i→∗R sµσ ′. Note that this is obviously fulfilled if sσ = sµσ ′.

(B) Relation to successors: Let (s→ t | σ) have the children labeled with (u1→ v1|τ1), . . . ,
(ue→ ve|τe) for e≥ 0. Hence, there exist pairwise different indexes c1, . . . ,ce ∈ {1, . . . ,
n} such that tc j σ

i→∗R u jτ j for all 1≤ j ≤ e. When replacing (s→ t | σ) by a new node
(sµ → t ′ | σ ′) with sµ → t ′ ∈M, we have to show that there exist pairwise different
indexes c′1, . . . ,c

′
e such that t ′|c′j σ

′ i→∗R u jτ j for all 1≤ j ≤ e. Note that this is obviously
fulfilled if for all j we have t ′|c′j σ

′ = tc j σ .

We now distinguish three cases. For each of them, we show how to choose the new node
(sµ→ t ′ | σ ′) such that the relations to the predecessor and to the successors in (A) and (B)
still hold.

• Case 1: i ∈ {c1, . . . ,ce} (i.e., ti gave rise to a successor of (s→ t | σ)).

Thus, there is a 1≤ j0 ≤ e with i = c j0 . Hence, tiσ = tc j0
σ

i→∗R u j0 τ j0 .
First regard the case where this reduction works in zero steps, i.e., tiσ = u j0 τ j0 . W.l.o.g.,
we can assume that u j0 is variable-disjoint from ti. Then ti unifies with u j0 using some
mgu µ where σ = µσ ′ and τ j0 = µτ ′j0 for some substitutions σ ′ and τ ′j0 . Since (s→ t |σ)
and (u j0 → v j0 | τ j0) are nodes in a chain tree, both sσ and u j0 τ j0 are in R-normal form.
This implies that sµ and u j0 µ are also in R-normal form. Hence, ti has the narrowing
substitution µ with corresponding narrowing result tiµ . Thus, sµ→ tµ ∈M and we can
replace the node (s→ t | σ) by (sµ→ tµ | σ ′). For (A), we have sµσ ′ = sσ . For (B), we
let c′j = c j for all 1 ≤ j ≤ e. Then we obtain t ′|c′j σ

′ = t ′|c j σ
′ = t|c j µσ ′ = t|c j σ , which

implies (B).
Otherwise, the reduction tiσ i→∗R u j0 τ j0 takes at least one step. Let π be the position of
tiσ where the first reduction step takes place and let `→ r ∈R be the rule used in this
step. We have π ∈ Pos(ti) and ti|π /∈ V , since the reduction cannot be “in σ”. Otherwise,
sσ would not be an R-normal form, due to V(ti)⊆V(s). W.l.o.g., we can assume that ` is
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variable-disjoint from ti. Then we can extend σ to the variables of ` such that ti|π σ = `σ
and

tiσ = ti[`]π σ
i→R ti[r]π σ

i→∗R u j0 τ j0 . (29)

Since σ is a unifier of ti|π and `, they also have an mgu µ with σ = µσ ′ for some
substitution σ ′. Moreover, since sσ is in R-normal form, sµ is in R-normal form as
well. Hence, µ is a narrowing substitution of ti and the corresponding narrowing result
is ti[r]π µ .
Let t ′ = COMn(t1, . . . , ti−1, ti[r]π , ti+1, . . . , tn)µ . Then sµ → t ′ ∈M and we replace the
node (s→ t | σ) by (sµ → t ′ | σ ′). It remains to show that (A) and (B) hold.
(A) is satisfied since σ = µσ ′ and hence, sσ = sµσ ′. For (B), we let c′j = c j for all
1≤ j ≤ e. For j0, we now obtain

t ′|c′j0
σ
′ = t ′|c j0

σ
′ = ti[r]π µσ

′ = ti[r]π σ
i→∗R u j0 τ j0

by (29). For j 6= j0, we have t ′|c′j σ
′ = t ′|c j σ

′ = t|c j µσ ′ = t|c j σ , so (B) follows.

• Case 2: i 6∈ {c1, . . . ,ce} and none of tc1 , . . . , tce is captured by µ1, . . . ,µd .

Hence, {c1, . . . ,ce} ⊆ {k1, . . . ,km}. We choose sµ → t ′ to be s→ COMm(tk1 , . . . , tkm)
(i.e., µ is the identity) and we choose σ ′ = σ . This implies sσ = sµσ ′ and thus, (A)
holds. Moreover for every c j, there exists an c′j with COMm(tk1 , . . . , tkm)|c′j = tc j , since
c j ∈ {k1, . . . ,km}. Thus, t ′|c′j σ

′ = COMm(tk1 , . . . , tkm)|c′j σ = tc j σ , which proves (B).

• Case 3: i /∈ {c1, . . . ,ce} and at least one of tc1 , . . . , tce is captured by µ1, . . . ,µd .

Let 1≤ j0 ≤ e such that tc j0
is captured by µ1, . . . ,µd . We have tc j0

σ
i→∗R u j0 τ j0 . As in

Case 1, this implies that there exists a narrowing substitution µ of tc j0
with σ = µσ̃ for

some substitution σ̃ . Since tc j0
is captured by µ1, . . . ,µd , there is a 1 ≤ j1 ≤ d where

µ j1 is more general than µ , i.e., µ = µ j1 σ for some substitution σ . We define σ ′ = σσ̃

which implies σ = µ j1 σ ′. Now we replace (s→ t | σ) by (sµ j1 → t ′ | σ ′) where t ′ =
COMn(t1µ j1 , . . . , ti−1µ j1 , w j1 , ti+1µ j1 , . . . , tnµ j1). Then (A) holds, since sσ = sµ j1 σ ′.
For (B), we let c′j = c j for all 1 ≤ j ≤ e. Since i /∈ {c1, . . . ,ce}, we obtain t ′|c′j σ

′ =

t ′|c j σ
′ = tc j µ j1 σ ′ = tc j σ , which implies (B).

Thus, for any (D,R)-chain tree T for a w] ∈ T ] there exists a (D′,R)-chain tree T ′

for w] where |T |{s→t} = |T ′|M and for any DT u→ v /∈ {s→ t}∪M, we have |T |{u→v} =

|T ′|{u→v}. Hence, for any w] ∈ T ] and any S ⊆ D with S ′ = S[s→ t / M], we have
Cplx〈D,S,R〉(w

])≤ Cplx〈D′,S ′,R〉(w
]). This implies ι〈D,S,R〉 v ι〈D′,S ′,R〉.

Moreover, if K ⊆ D and K′ results from K by removing s→ t and all DTs that are
reachable from s→ t in the (D,R)-dependency graph, then K′ also contains no DT that
is contained in M or reachable from M in the (D′,R)-dependency graph. Hence, for
Cplx〈D,K′,R〉(w

]) or Cplx〈D′,K′,R〉(w
]) it suffices to consider chain trees not containing s→ t

or DTs from M. Such chain trees are both (D,R)- and (D′,R)-chain trees. Hence, we ob-
tain Cplx〈D,K′,R〉(w

]) = Cplx〈D′,K′,R〉(w
]) for all w] ∈ T ] and thus, ι〈D,K′,R〉 = ι〈D′,K′,R〉.

As K′ ⊆K, we have ι〈D,K′,R〉 v ι〈D,K,R〉 and hence ι〈D′,K′,R〉 v ι〈D,K,R〉.
From ι〈D,S,R〉 v ι〈D′,S ′,R〉 and ι〈D′,K′,R〉 v ι〈D,K,R〉, we obtain γP v γ〈D′,S ′,K′,R〉, i.e.,

the narrowing processor is sound. ut

Example 44 To illustrate the narrowing processor, consider the following TRS.

f(c(n,x))→ c(f(g(c(n,x))), f(h(c(n,x)))) g(c(0,x))→ x h(c(1,x))→ x
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So f operates on “lists” of 0s and 1s, where g removes a leading 0 and h removes a lea-
ding 1. Since g’s and h’s applicability “exclude” each other, the TRS has linear (and not
exponential) complexity. The leaf removal, rhs simplification, and the usable rules processor
give the problem 〈{(30)}, {(30)},∅, {g(c(0,x))→ x, h(c(1,x))→ x}〉 with

f](c(n,x))→ COM2(f
](g(c(n,x))), f](h(c(n,x)))) (30)

The only narrowing substitution of t1 = f](g(c(n,x))) is [n/0] and the corresponding nar-
rowing result is f](x). However, t2 = f](h(c(n,x))) is not captured by the substitution [n/0],
since [n/0] is not more general than t2’s narrowing substitution [n/1]. Hence, the DT (30) is
replaced by the following two new DTs:

f](c(0,x)) → COM2(f
](x), f](h(c(0,x)))) (31)

f](c(n,x)) → COM1(f
](h(c(n,x)))) (32)

By applying the narrowing processor again, we replace (32) by f](c(1,x))→ COM1(f
](x))

and f](c(n,x))→ COM0. One can also simplify (31) further to f](c(0,x))→ COM1(f
](x))

by the rhs simplification processor. Now ιR v Pol1 is easy to show by the reduction pair
processor.

Example 45 Reconsider the TRS of Ex. 4. The canonical extended DT problem is trans-
formed to 〈D1,D1,∅,R1〉, where D1 = {(1),(2),(8)} and R1 are the gt- and p-rules, cf. Ex.
30. In m](x,y)→COM2(if

](gt(x,y),x,y),gt](x,y)) (1), one can narrow t1 = if](gt(x,y),x,y).
Its narrowing substitutions are [x/0,y/k], [x/s(n),y/0], and [x/s(n),y/s(k)]. Note that t2 =
gt](x,y) is captured, as its only narrowing substitution is [x/s(n),y/s(k)]. So (1) can be
replaced by

m](0,k) → COM2(if
](false,0,k),gt](0,k)) (33)

m](s(n),0) → COM2(if
](true,s(n),0),gt](s(n),0)) (34)

m](s(n),s(k)) → COM2(if
](gt(n,k),s(n),s(k)),gt](s(n),s(k))) (35)

m](x,y) → COM0 (36)

The leaf removal processor deletes (33) and (36), and the rhs simplification processor sim-
plifies (34) to

m](s(n),0)→ COM1(if
](true,s(n),0)) (37)

This yields 〈D2,D2,∅,R1〉 with D2 = {(37),(35),(2),(8)}. Now the narrowing processor
replaces if](true,x,y)→ COM2(m

](p(x),y),p](x)) (2) by

if](true,0,y) → COM2(m
](0,y),p](0)) (38)

if](true,s(n),y) → COM2(m
](n,y),p](s(n))) (39)

if](true,x,y) → COM0 (40)

The leaf removal processor deletes (38) and (40), and the rhs simplification processor trans-
forms (39) into

if](true,s(n),y)→ COM1(m
](n,y)) (41)

Now the usable rule processor removes the p-rules from R1. This yields 〈D3,D3,∅,R2〉,
where D3 = {(37),(35),(41),(8)} and R2 are the gt-rules. By the polynomial interpretation
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[0] = [true] = [false] = 0, [s](x) = x+ 2, [gt](x,y) = [gt]](x,y) = x, [m]](x,y) = (x+ 1)2,
[if]](x,y,z) = y2, all DTs in D3 are strictly decreasing and all rules in R2 are weakly de-

creasing. So the reduction pair processor yields 〈D3,D3,∅,R2〉
Pol2
; 〈D3,∅,D3,R2〉. As this

DT problem is solved, we obtain ιR v Pol0⊕ . . .⊕Pol0⊕Pol2 = Pol2, i.e., R has quadratic
complexity.

Note that in Thm. 43, we cannot define K′ = K[s→ t /M], because the narrowing step
performed on s→ t does not necessarily correspond to an innermost reduction. Hence, there
can be (D′,R)-chains that correspond to non-innermost reductions with D∪R. So there may
exist terms whose maximal (D′,R)-chain tree is larger than their maximal (D,R)-chain tree
and thus, ι〈D′,K[s→t/M],R〉 w ι〈D,K,R〉. But we need ι〈D′,K′,R〉 v ι〈D,K,R〉 in order to guar-
antee the soundness of the processor, i.e., to ensure that γ〈D,S,K,R〉 = ι〈D,S,R〉� ι〈D,K,R〉 v
ι〈D′,S ′,R〉� ι〈D′,K′,R〉 = γ〈D′,S ′,K′,R〉. For the same reason, applying the narrowing proces-
sor can increase the complexity of a DT problem. This is demonstrated in the following
example.

Example 46 Let R= {g(h(x))→ x, h(s(x))→ 0} and let D be the following set:

f](s(x))→ COM3(f
](g(h(x))), f](g(h(x))),g](x)) (42)

g](c(x))→ COM1(g
](x)) (43)

Consider the DT problem P = 〈D,{(43)},{(42)},R〉. This problem has the following de-
pendency graph.

(42) (43)

Note that there is no loop from (42) to itself, as no instance of f](g(h(x))) has an innermost
reduction to a term of the form f](s(. . .)). Therefore, this problem has the complexity γP =
Pol1. By narrowing, we can replace (42) by

f](s(x))→ COM3(f
](x), f](g(h(x))),g](x)) (44)

f](s(x))→ COM0, (45)

where (45) is deleted by the leaf removal processor. If we had defined K′ = K[s→ t / M]
in Thm. 43, we would result in P′ = 〈{(44),(43)},{(43)},{(44)},R〉. But P′ has the com-
plexity γP′ = Pol0 and hence the narrowing processor would not be sound. With the correct
definition, the result is P′′ = 〈{(44),(43)},{(43)},∅,R〉 which still has linear complexity.
Narrowing again replaces (44) by

f](s(x))→ COM3(f
](x), f](x),g](x)) (46)

and (45) (which is again deleted by leaf removal). Now the resulting problem P′′′ = 〈{(46),
(43)},{(43)},∅,R〉 has exponential complexity. Thus, the narrowing processor does not
always preserve complexity.
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CaT
Pol0 Pol1 Pol2 Pol3 no result ∑

A
P
ro
V
E

Pol0 - 199 - - 144 343
Pol1 - 96 10 - 95 201
Pol2 - 15 - - 67 82
Pol3 - - - - 13 13

no result - 6 2 1 601 610
∑ 0 316 12 1 920 1249

Fig. 2 AProVE vs. CaT

TCT
Pol0 Pol1 Pol2 Pol3 no result ∑

A
P
ro
V
E

Pol0 1 209 8 - 125 343
Pol1 - 128 19 - 54 201
Pol2 - 24 17 - 41 82
Pol3 - - - - 13 13

no result - 29 13 - 568 610
∑ 1 390 57 0 801 1249

Fig. 3 AProVE vs. TCT

6 Evaluation and Conclusion

We presented a new technique for innermost runtime complexity analysis by adapting the
termination techniques of the DP framework. To this end, we introduced several processors
to simplify “DT problems”, which gives rise to a flexible and modular framework for au-
tomated complexity proofs. Thus, recent advances in termination analysis can now also be
used for complexity analysis.

To evaluate our contributions, we implemented them in the termination prover AProVE
and compared it with the complexity tools CaT 1.5 [30] and TCT [2]. As suggested by the
authors of TCT, we used its development version id ccf74e291a. We ran the tools on 1249
TRSs from the category “Runtime Complexity – Innermost Strategy” of the Termination
Problem Data Base used in the full run of the International Termination Competition 2012.
For more information on the termination competition, see http://www.termination-

portal.org/wiki/Termination_Competition. We omitted the 60 TRSs which contain
rules with extra variables on the right-hand side, since they are trivially non-terminating.
As in the competition, each tool had a time limit of 60 seconds for each example. Fig. 2
compares CaT and AProVE. For instance, the first row means that AProVE showed constant
complexity for 343 examples.5 On those examples, CaT proved linear complexity in 199
cases and failed in 144 cases. So in the light gray part of the table, AProVE gave more
precise results than CaT. In the medium gray part, both tools obtained equal results. In the
dark gray part, CaT was more precise than AProVE. Similarly, Fig. 3 compares TCT and
AProVE.

So AProVE showed polynomial innermost runtime for 639 of the 1249 examples (51 %).
(Note that the collection also contains many examples whose complexity is not polynomial.)
In contrast, CaT resp. TCT proved polynomial innermost runtime for 329 (26 %) resp. 448
(36 %) examples. Even a “combined tool” of CaT and TCT (which always returns the better
result of these two tools) would only show polynomial runtime for 501 examples (40 %).
Hence, our contributions represent a significant advance. This also confirms the results of
the Termination Competition 2010 – 2012, where AProVE won the category of innermost

5 More precisely, the table gives the numbers of TRSs R where the respective tool proved that ιR is at
most Polk .
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Processor No. of Applications

reduction pair processor 660
leaf removal processor 448
unreachable DT removal processor 389
rhs simplification processor 263
narrowing processor 225
knowledge propagation processor 73
match-bounds 31
instantiation processor 13
rewriting processor 9
forward instantiation processor 5

Fig. 4 Impact of different DT processors

runtime complexity analysis. (In contrast to CaT and TCT, AProVE did not participate in
any other complexity categories as it cannot analyze derivational or non-innermost runtime
complexity.) AProVE also succeeds on Ex. 4, 28, and 44, whereas CaT fails on them and
TCT fails on Ex. 4 and 44. (TCT can determine linear complexity for Ex. 28, and Ex. 25
can be analyzed by all three tools.)

Fig. 4 examines the impact of the different DT processors. For each processor, the table
states how often it was applied in (successful) proofs (i.e., in proofs where AProVE could
infer polynomial innermost runtime within the time limit). Of course, some processors (like
the reduction pair processor) were applied several times within the same proof. Here, we
used a reduction pair processor with polynomial interpretations which was combined with
the usable rule processor. In this way, one can use the refinement of [12] to compute us-
able rules w.r.t. argument filterings (i.e., when determining the usable rules one does not
have to consider those positions which are “filtered away” by the reduction pair). The in-
stantiation, rewriting, and forward instantiation processors are analogous to the narrowing
processor (i.e., they adapt the techniques of instantiating, rewriting, and forward instanti-
ating dependency pairs from [12] to complexity analysis). Finally, we also integrated the
approach of [10] to use match-bounds for complexity analysis. This approach is particularly
useful for string rewrite systems, and AProVE applied it to infer complexity bounds for 31
of the 1249 examples in the collection.

The proof strategy used in AProVE was to first simplify the initial DT problem by the un-
reachable DT removal, rhs simplification, leaf removal, and knowledge propagation proces-
sors. Afterwards, we try to apply the reduction pair processor with polynomial orders and (in
parallel, although delayed by 6 seconds) the transformation processors. For the transforma-
tion processors, we attempt narrowing first and then try the other transformations in parallel.
A successful application of the reduction pair processor is always followed by knowledge
propagation, a successful application of a transformation processor is followed by a simpli-
fication of the remaining problem. If this strategy does not succeed in 45 seconds, we also
try to apply the match-bounds approach in parallel.

The motivation for this strategy is as follows: unreachable DT removal, rhs simplifi-
cation, leaf removal, and knowledge propagation are fast (no search is needed) and they
obviously simplify the problem whenever they are applicable. Hence, they are used as early
and as often as possible. In particular, we apply them again after transformation processors,
as these processors may change the structure of the dependency graph (and hence lead to
new opportunities for simplification). The reduction pair processor needs to search for a
suitable reduction order and hence might be slow. However, if applicable, the reduction pair
processor always simplifies the problem, so we prefer it to the transformation processors.
As shown in Ex. 46, transformation processors do not always preserve the complexity of
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AProVE without rhs simplification and unreachable DT removal processor
Pol0 Pol1 Pol2 Pol3 no result ∑

fu
ll
A
P
ro
V
E Pol0 131 117 15 1 79 343

Pol1 2 171 12 - 16 201
Pol2 - 7 60 1 14 82
Pol3 - - 1 7 5 13

no result - - 1 - 609 610
∑ 133 295 89 9 723 1249

Fig. 5 Impact of the rhs simplification and the unreachable DT removal processor

a DT problem (the transformed problem might have a larger complexity than the original
one) and, as for termination analysis, transformation processors are potentially applicable
infinitely often, cf. [12].

To evaluate the usefulness of the rhs simplification processor and the unreachable DT
processor (which are new compared to the preliminary version of the current paper in [27]),
we also tested the full version of AProVE against a variant where we disabled these two
processors. As shown in the table of Fig. 5, this variant is substantially weaker. While the
full version of AProVE showed polynomial innermost runtime for 639 examples (51 %),
this restricted variant only succeeded for 526 TRSs (42 %). In particular, the new processors
help to detect more examples with constant complexity. (That there are also a few examples
where the restricted variant obtained more precise complexity bounds is due to the heuris-
tics and internal time-limits of AProVE, which determine its strategy to apply the different
processors.)

For details on our experiments and to run our implementation in AProVE via a web
interface, we refer to http://aprove.informatik.rwth-aachen.de/eval/Complexity/.

Acknowledgments. We are grateful to the CaT and the TCT team for their support with the experiments and
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