We consider the following Problem:

  Strict Trs:
    {  f1() -> g1()
     , f1() -> g2()
     , f2() -> g1()
     , f2() -> g2()
     , g1() -> h1()
     , g1() -> h2()
     , g2() -> h1()
     , g2() -> h2()
     , h1() -> i()
     , h2() -> i()
     , e1(h1(), h2(), x, y, z) -> e2(x, x, y, z, z)
     , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
     , e2(f1(), x, y, z, f2()) -> e3(x, y, x, y, y, z, y, z, x, y, z)
     , e2(x, x, y, z, z) -> e6(x, y, z)
     , e2(i(), x, y, z, i()) -> e6(x, y, z)
     , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
       e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
     , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
     , e4(g1(), x1, g2(), x1, g1(), x1, g2(), x1, x, y, z) ->
       e1(x1, x1, x, y, z)
     , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
       e5(x1, x, y, z)
     , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)
     , e5(i(), x, y, z) -> e6(x, y, z)}
  StartTerms: basic terms
  Strategy: innermost

Certificate: YES(?,O(n^1))

Proof:
  Arguments of following rules are not normal-forms:
  {  e1(h1(), h2(), x, y, z) -> e2(x, x, y, z, z)
   , e4(g1(), x1, g2(), x1, g1(), x1, g2(), x1, x, y, z) ->
     e1(x1, x1, x, y, z)
   , e2(f1(), x, y, z, f2()) -> e3(x, y, x, y, y, z, y, z, x, y, z)}
  
  All above mentioned rules can be savely removed.
  
  We consider the following Problem:
  
    Strict Trs:
      {  f1() -> g1()
       , f1() -> g2()
       , f2() -> g1()
       , f2() -> g2()
       , g1() -> h1()
       , g1() -> h2()
       , g2() -> h1()
       , g2() -> h2()
       , h1() -> i()
       , h2() -> i()
       , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
       , e2(x, x, y, z, z) -> e6(x, y, z)
       , e2(i(), x, y, z, i()) -> e6(x, y, z)
       , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
         e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
       , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
       , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
         e5(x1, x, y, z)
       , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)
       , e5(i(), x, y, z) -> e6(x, y, z)}
    StartTerms: basic terms
    Strategy: innermost
  
  Certificate: YES(?,O(n^1))
  
  Proof:
    The weightgap principle applies, where following rules are oriented strictly:
    
    TRS Component:
      {  f1() -> g1()
       , f1() -> g2()
       , e2(x, x, y, z, z) -> e6(x, y, z)
       , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
    
    Interpretation of nonconstant growth:
    -------------------------------------
      The following argument positions are usable:
        Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
        Uargs(e6) = {}, Uargs(e4) = {}
      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
      Interpretation Functions:
       f1() = [2]
              [0]
       g1() = [0]
              [0]
       g2() = [0]
              [0]
       f2() = [0]
              [0]
       h1() = [0]
              [0]
       h2() = [0]
              [0]
       i() = [0]
             [0]
       e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0]
                                [1 1]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
       e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [1 1] x4 + [0 0] x5 + [1]
                                [0 0]      [1 1]      [0 0]      [0 0]      [1 1]      [1]
       e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                            [0 0]      [0 0]      [0 0]      [0 0]      [1]
       e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0]
                                                          [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [0]
       e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                        [0 0]      [0 0]      [1 1]      [0]
       e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                          [0 0]      [1 1]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
    
    The strictly oriented rules are moved into the weak component.
    
    We consider the following Problem:
    
      Strict Trs:
        {  f2() -> g1()
         , f2() -> g2()
         , g1() -> h1()
         , g1() -> h2()
         , g2() -> h1()
         , g2() -> h2()
         , h1() -> i()
         , h2() -> i()
         , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
         , e2(i(), x, y, z, i()) -> e6(x, y, z)
         , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
           e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
         , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
         , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
           e5(x1, x, y, z)
         , e5(i(), x, y, z) -> e6(x, y, z)}
      Weak Trs:
        {  f1() -> g1()
         , f1() -> g2()
         , e2(x, x, y, z, z) -> e6(x, y, z)
         , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
      StartTerms: basic terms
      Strategy: innermost
    
    Certificate: YES(?,O(n^1))
    
    Proof:
      The weightgap principle applies, where following rules are oriented strictly:
      
      TRS Component:
        {  f2() -> g1()
         , f2() -> g2()
         , e2(i(), x, y, z, i()) -> e6(x, y, z)}
      
      Interpretation of nonconstant growth:
      -------------------------------------
        The following argument positions are usable:
          Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
          Uargs(e6) = {}, Uargs(e4) = {}
        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
        Interpretation Functions:
         f1() = [0]
                [0]
         g1() = [0]
                [0]
         g2() = [0]
                [0]
         f2() = [2]
                [0]
         h1() = [0]
                [0]
         h2() = [0]
                [0]
         i() = [0]
               [0]
         e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0 0] x4 + [1 1] x5 + [0]
                                  [1 1]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
         e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [1]
                                  [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [1]
         e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [1]
                              [0 0]      [0 0]      [0 0]      [0 0]      [1]
         e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [0]
                                                            [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [1 1]       [0 0]       [0]
         e6(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0]
                          [0 0]      [1 1]      [0 0]      [0]
         e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [1]
                                                            [0 0]      [1 1]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [1 1]       [0 0]       [1]
      
      The strictly oriented rules are moved into the weak component.
      
      We consider the following Problem:
      
        Strict Trs:
          {  g1() -> h1()
           , g1() -> h2()
           , g2() -> h1()
           , g2() -> h2()
           , h1() -> i()
           , h2() -> i()
           , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
           , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
             e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
           , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
           , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
             e5(x1, x, y, z)
           , e5(i(), x, y, z) -> e6(x, y, z)}
        Weak Trs:
          {  f2() -> g1()
           , f2() -> g2()
           , e2(i(), x, y, z, i()) -> e6(x, y, z)
           , f1() -> g1()
           , f1() -> g2()
           , e2(x, x, y, z, z) -> e6(x, y, z)
           , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
        StartTerms: basic terms
        Strategy: innermost
      
      Certificate: YES(?,O(n^1))
      
      Proof:
        The weightgap principle applies, where following rules are oriented strictly:
        
        TRS Component: {h1() -> i()}
        
        Interpretation of nonconstant growth:
        -------------------------------------
          The following argument positions are usable:
            Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
            Uargs(e6) = {}, Uargs(e4) = {}
          We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
          Interpretation Functions:
           f1() = [0]
                  [0]
           g1() = [0]
                  [0]
           g2() = [0]
                  [0]
           f2() = [0]
                  [0]
           h1() = [2]
                  [0]
           h2() = [0]
                  [0]
           i() = [0]
                 [0]
           e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0]
                                    [1 1]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
           e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                    [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
           e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                                [0 0]      [0 0]      [0 0]      [0 0]      [1]
           e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0]
                                                              [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [0]
           e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                            [0 0]      [0 0]      [1 1]      [0]
           e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                              [0 0]      [1 1]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
        
        The strictly oriented rules are moved into the weak component.
        
        We consider the following Problem:
        
          Strict Trs:
            {  g1() -> h1()
             , g1() -> h2()
             , g2() -> h1()
             , g2() -> h2()
             , h2() -> i()
             , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
             , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
               e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
             , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
             , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
               e5(x1, x, y, z)
             , e5(i(), x, y, z) -> e6(x, y, z)}
          Weak Trs:
            {  h1() -> i()
             , f2() -> g1()
             , f2() -> g2()
             , e2(i(), x, y, z, i()) -> e6(x, y, z)
             , f1() -> g1()
             , f1() -> g2()
             , e2(x, x, y, z, z) -> e6(x, y, z)
             , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
          StartTerms: basic terms
          Strategy: innermost
        
        Certificate: YES(?,O(n^1))
        
        Proof:
          The weightgap principle applies, where following rules are oriented strictly:
          
          TRS Component: {h2() -> i()}
          
          Interpretation of nonconstant growth:
          -------------------------------------
            The following argument positions are usable:
              Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
              Uargs(e6) = {}, Uargs(e4) = {}
            We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
            Interpretation Functions:
             f1() = [0]
                    [0]
             g1() = [0]
                    [0]
             g2() = [0]
                    [0]
             f2() = [0]
                    [0]
             h1() = [0]
                    [0]
             h2() = [2]
                    [0]
             i() = [0]
                   [0]
             e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0]
                                      [1 1]      [0 0]      [0 0]      [0 0]      [0 0]      [0]
             e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
             e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                                  [0 0]      [0 0]      [0 0]      [0 0]      [1]
             e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0]
                                                                [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [0]
             e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                              [0 0]      [0 0]      [1 1]      [0]
             e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                                [0 0]      [1 1]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
          
          The strictly oriented rules are moved into the weak component.
          
          We consider the following Problem:
          
            Strict Trs:
              {  g1() -> h1()
               , g1() -> h2()
               , g2() -> h1()
               , g2() -> h2()
               , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
               , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                 e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
               , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
               , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                 e5(x1, x, y, z)
               , e5(i(), x, y, z) -> e6(x, y, z)}
            Weak Trs:
              {  h2() -> i()
               , h1() -> i()
               , f2() -> g1()
               , f2() -> g2()
               , e2(i(), x, y, z, i()) -> e6(x, y, z)
               , f1() -> g1()
               , f1() -> g2()
               , e2(x, x, y, z, z) -> e6(x, y, z)
               , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
            StartTerms: basic terms
            Strategy: innermost
          
          Certificate: YES(?,O(n^1))
          
          Proof:
            The weightgap principle applies, where following rules are oriented strictly:
            
            TRS Component: {e1(x1, x1, x, y, z) -> e5(x1, x, y, z)}
            
            Interpretation of nonconstant growth:
            -------------------------------------
              The following argument positions are usable:
                Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
                Uargs(e6) = {}, Uargs(e4) = {}
              We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
              Interpretation Functions:
               f1() = [0]
                      [0]
               g1() = [0]
                      [0]
               g2() = [0]
                      [0]
               f2() = [0]
                      [0]
               h1() = [0]
                      [0]
               h2() = [0]
                      [0]
               i() = [0]
                     [0]
               e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2]
                                        [1 1]      [0 0]      [0 0]      [0 0]      [0 0]      [2]
               e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                        [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
               e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                                    [0 0]      [0 0]      [0 0]      [0 0]      [1]
               e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [0]
                                                                  [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [0]
               e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                                [0 0]      [0 0]      [1 1]      [0]
               e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                                  [0 0]      [1 1]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
            
            The strictly oriented rules are moved into the weak component.
            
            We consider the following Problem:
            
              Strict Trs:
                {  g1() -> h1()
                 , g1() -> h2()
                 , g2() -> h1()
                 , g2() -> h2()
                 , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                   e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                 , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                 , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                   e5(x1, x, y, z)
                 , e5(i(), x, y, z) -> e6(x, y, z)}
              Weak Trs:
                {  e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                 , h2() -> i()
                 , h1() -> i()
                 , f2() -> g1()
                 , f2() -> g2()
                 , e2(i(), x, y, z, i()) -> e6(x, y, z)
                 , f1() -> g1()
                 , f1() -> g2()
                 , e2(x, x, y, z, z) -> e6(x, y, z)
                 , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
              StartTerms: basic terms
              Strategy: innermost
            
            Certificate: YES(?,O(n^1))
            
            Proof:
              The weightgap principle applies, where following rules are oriented strictly:
              
              TRS Component:
                {  e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                   e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                 , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)}
              
              Interpretation of nonconstant growth:
              -------------------------------------
                The following argument positions are usable:
                  Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
                  Uargs(e6) = {}, Uargs(e4) = {}
                We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                Interpretation Functions:
                 f1() = [0]
                        [0]
                 g1() = [0]
                        [0]
                 g2() = [0]
                        [0]
                 f2() = [0]
                        [0]
                 h1() = [0]
                        [0]
                 h2() = [0]
                        [0]
                 i() = [0]
                       [0]
                 e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [1 0] x3 + [0 0] x4 + [1 1] x5 + [2]
                                          [1 1]      [0 0]      [0 1]      [0 0]      [0 0]      [2]
                 e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [1]
                                          [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [1]
                 e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [1]
                                      [0 0]      [0 0]      [0 0]      [0 0]      [1]
                 e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [2]
                                                                    [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [1 1]       [0 0]       [2]
                 e6(x1, x2, x3) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0]
                                  [0 0]      [1 1]      [0 0]      [0]
                 e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 1] x5 + [1 0] x6 + [1 0] x7 + [0 1] x8 + [0 0] x9 + [0 0] x10 + [1 1] x11 + [1]
                                                                    [0 0]      [1 1]      [0 0]      [1 1]      [1 0]      [0 1]      [0 1]      [1 0]      [0 0]      [1 1]       [0 0]       [1]
              
              The strictly oriented rules are moved into the weak component.
              
              We consider the following Problem:
              
                Strict Trs:
                  {  g1() -> h1()
                   , g1() -> h2()
                   , g2() -> h1()
                   , g2() -> h2()
                   , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                     e5(x1, x, y, z)
                   , e5(i(), x, y, z) -> e6(x, y, z)}
                Weak Trs:
                  {  e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                     e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                   , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                   , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                   , h2() -> i()
                   , h1() -> i()
                   , f2() -> g1()
                   , f2() -> g2()
                   , e2(i(), x, y, z, i()) -> e6(x, y, z)
                   , f1() -> g1()
                   , f1() -> g2()
                   , e2(x, x, y, z, z) -> e6(x, y, z)
                   , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
                StartTerms: basic terms
                Strategy: innermost
              
              Certificate: YES(?,O(n^1))
              
              Proof:
                The weightgap principle applies, where following rules are oriented strictly:
                
                TRS Component: {e5(i(), x, y, z) -> e6(x, y, z)}
                
                Interpretation of nonconstant growth:
                -------------------------------------
                  The following argument positions are usable:
                    Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
                    Uargs(e6) = {}, Uargs(e4) = {}
                  We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                  Interpretation Functions:
                   f1() = [0]
                          [0]
                   g1() = [0]
                          [0]
                   g2() = [0]
                          [0]
                   f2() = [0]
                          [0]
                   h1() = [0]
                          [0]
                   h2() = [0]
                          [0]
                   i() = [0]
                         [0]
                   e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2]
                                            [1 1]      [0 0]      [0 0]      [0 0]      [1 1]      [2]
                   e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                            [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
                   e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                                        [0 0]      [0 0]      [0 0]      [1 1]      [1]
                   e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2]
                                                                      [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [2]
                   e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                                    [0 0]      [0 0]      [1 1]      [0]
                   e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                                      [0 0]      [0 0]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
                
                The strictly oriented rules are moved into the weak component.
                
                We consider the following Problem:
                
                  Strict Trs:
                    {  g1() -> h1()
                     , g1() -> h2()
                     , g2() -> h1()
                     , g2() -> h2()
                     , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                       e5(x1, x, y, z)}
                  Weak Trs:
                    {  e5(i(), x, y, z) -> e6(x, y, z)
                     , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                       e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                     , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                     , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                     , h2() -> i()
                     , h1() -> i()
                     , f2() -> g1()
                     , f2() -> g2()
                     , e2(i(), x, y, z, i()) -> e6(x, y, z)
                     , f1() -> g1()
                     , f1() -> g2()
                     , e2(x, x, y, z, z) -> e6(x, y, z)
                     , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
                  StartTerms: basic terms
                  Strategy: innermost
                
                Certificate: YES(?,O(n^1))
                
                Proof:
                  The weightgap principle applies, where following rules are oriented strictly:
                  
                  TRS Component:
                    {  g1() -> h1()
                     , g1() -> h2()}
                  
                  Interpretation of nonconstant growth:
                  -------------------------------------
                    The following argument positions are usable:
                      Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
                      Uargs(e6) = {}, Uargs(e4) = {}
                    We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                    Interpretation Functions:
                     f1() = [2]
                            [0]
                     g1() = [1]
                            [0]
                     g2() = [0]
                            [0]
                     f2() = [2]
                            [0]
                     h1() = [0]
                            [0]
                     h2() = [0]
                            [0]
                     i() = [0]
                           [0]
                     e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2]
                                              [1 1]      [0 0]      [0 0]      [0 0]      [1 1]      [2]
                     e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                              [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
                     e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                                          [0 0]      [0 0]      [0 0]      [1 1]      [1]
                     e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2]
                                                                        [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [2]
                     e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                                      [0 0]      [0 0]      [1 1]      [0]
                     e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                                        [0 0]      [0 0]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
                  
                  The strictly oriented rules are moved into the weak component.
                  
                  We consider the following Problem:
                  
                    Strict Trs:
                      {  g2() -> h1()
                       , g2() -> h2()
                       , e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                         e5(x1, x, y, z)}
                    Weak Trs:
                      {  g1() -> h1()
                       , g1() -> h2()
                       , e5(i(), x, y, z) -> e6(x, y, z)
                       , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                         e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                       , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                       , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                       , h2() -> i()
                       , h1() -> i()
                       , f2() -> g1()
                       , f2() -> g2()
                       , e2(i(), x, y, z, i()) -> e6(x, y, z)
                       , f1() -> g1()
                       , f1() -> g2()
                       , e2(x, x, y, z, z) -> e6(x, y, z)
                       , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
                    StartTerms: basic terms
                    Strategy: innermost
                  
                  Certificate: YES(?,O(n^1))
                  
                  Proof:
                    The weightgap principle applies, where following rules are oriented strictly:
                    
                    TRS Component:
                      {  g2() -> h1()
                       , g2() -> h2()}
                    
                    Interpretation of nonconstant growth:
                    -------------------------------------
                      The following argument positions are usable:
                        Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
                        Uargs(e6) = {}, Uargs(e4) = {}
                      We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                      Interpretation Functions:
                       f1() = [2]
                              [0]
                       g1() = [0]
                              [0]
                       g2() = [1]
                              [0]
                       f2() = [2]
                              [0]
                       h1() = [0]
                              [0]
                       h2() = [0]
                              [0]
                       i() = [0]
                             [0]
                       e1(x1, x2, x3, x4, x5) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [2]
                                                [1 1]      [0 0]      [0 0]      [0 0]      [1 1]      [2]
                       e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                                [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
                       e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1]
                                            [0 0]      [0 0]      [0 0]      [1 1]      [1]
                       e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2]
                                                                          [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [2]
                       e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                                        [0 0]      [0 0]      [1 1]      [0]
                       e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                                          [0 0]      [0 0]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
                    
                    The strictly oriented rules are moved into the weak component.
                    
                    We consider the following Problem:
                    
                      Strict Trs:
                        {e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                         e5(x1, x, y, z)}
                      Weak Trs:
                        {  g2() -> h1()
                         , g2() -> h2()
                         , g1() -> h1()
                         , g1() -> h2()
                         , e5(i(), x, y, z) -> e6(x, y, z)
                         , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                           e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                         , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                         , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                         , h2() -> i()
                         , h1() -> i()
                         , f2() -> g1()
                         , f2() -> g2()
                         , e2(i(), x, y, z, i()) -> e6(x, y, z)
                         , f1() -> g1()
                         , f1() -> g2()
                         , e2(x, x, y, z, z) -> e6(x, y, z)
                         , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
                      StartTerms: basic terms
                      Strategy: innermost
                    
                    Certificate: YES(?,O(n^1))
                    
                    Proof:
                      The weightgap principle applies, where following rules are oriented strictly:
                      
                      TRS Component:
                        {e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                         e5(x1, x, y, z)}
                      
                      Interpretation of nonconstant growth:
                      -------------------------------------
                        The following argument positions are usable:
                          Uargs(e1) = {}, Uargs(e2) = {}, Uargs(e5) = {}, Uargs(e3) = {},
                          Uargs(e6) = {}, Uargs(e4) = {}
                        We have the following EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
                        Interpretation Functions:
                         f1() = [0]
                                [0]
                         g1() = [0]
                                [0]
                         g2() = [0]
                                [0]
                         f2() = [0]
                                [0]
                         h1() = [0]
                                [0]
                         h2() = [0]
                                [0]
                         i() = [0]
                               [0]
                         e1(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [0 0] x3 + [1 1] x4 + [0 0] x5 + [0]
                                                  [0 0]      [1 1]      [0 0]      [0 0]      [1 1]      [2]
                         e2(x1, x2, x3, x4, x5) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [1 1] x5 + [1]
                                                  [0 0]      [1 1]      [0 0]      [1 1]      [0 0]      [1]
                         e5(x1, x2, x3, x4) = [0 0] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0]
                                              [0 0]      [0 0]      [0 0]      [1 1]      [1]
                         e3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [0 0] x1 + [1 1] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [0 0] x7 + [1 1] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [2]
                                                                            [1 1]      [0 0]      [0 0]      [1 1]      [1 1]      [0 0]      [1 1]      [0 0]      [1 1]      [0 0]       [1 1]       [2]
                         e6(x1, x2, x3) = [0 0] x1 + [1 1] x2 + [0 0] x3 + [0]
                                          [0 0]      [0 0]      [1 1]      [0]
                         e4(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = [1 1] x1 + [0 0] x2 + [1 1] x3 + [0 0] x4 + [0 0] x5 + [1 1] x6 + [1 1] x7 + [0 0] x8 + [0 0] x9 + [1 1] x10 + [0 0] x11 + [1]
                                                                            [0 0]      [0 0]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]      [1 1]      [0 0]      [0 0]       [1 1]       [1]
                      
                      The strictly oriented rules are moved into the weak component.
                      
                      We consider the following Problem:
                      
                        Weak Trs:
                          {  e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                             e5(x1, x, y, z)
                           , g2() -> h1()
                           , g2() -> h2()
                           , g1() -> h1()
                           , g1() -> h2()
                           , e5(i(), x, y, z) -> e6(x, y, z)
                           , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                             e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                           , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                           , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                           , h2() -> i()
                           , h1() -> i()
                           , f2() -> g1()
                           , f2() -> g2()
                           , e2(i(), x, y, z, i()) -> e6(x, y, z)
                           , f1() -> g1()
                           , f1() -> g2()
                           , e2(x, x, y, z, z) -> e6(x, y, z)
                           , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
                        StartTerms: basic terms
                        Strategy: innermost
                      
                      Certificate: YES(O(1),O(1))
                      
                      Proof:
                        We consider the following Problem:
                        
                          Weak Trs:
                            {  e4(i(), x1, i(), x1, i(), x1, i(), x1, x, y, z) ->
                               e5(x1, x, y, z)
                             , g2() -> h1()
                             , g2() -> h2()
                             , g1() -> h1()
                             , g1() -> h2()
                             , e5(i(), x, y, z) -> e6(x, y, z)
                             , e3(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z) ->
                               e4(x1, x1, x2, x2, x3, x3, x4, x4, x, y, z)
                             , e3(x, y, x, y, y, z, y, z, x, y, z) -> e6(x, y, z)
                             , e1(x1, x1, x, y, z) -> e5(x1, x, y, z)
                             , h2() -> i()
                             , h1() -> i()
                             , f2() -> g1()
                             , f2() -> g2()
                             , e2(i(), x, y, z, i()) -> e6(x, y, z)
                             , f1() -> g1()
                             , f1() -> g2()
                             , e2(x, x, y, z, z) -> e6(x, y, z)
                             , e4(x, x, x, x, x, x, x, x, x, x, x) -> e6(x, x, x)}
                          StartTerms: basic terms
                          Strategy: innermost
                        
                        Certificate: YES(O(1),O(1))
                        
                        Proof:
                          Empty rules are trivially bounded

Hurray, we answered YES(?,O(n^1))