Problem:
__(__(X,Y),Z) -> __(X,__(Y,Z))
__(X,nil()) -> X
__(nil(),X) -> X
U11(tt()) -> U12(tt())
U12(tt()) -> tt()
isNePal(__(I,__(P,I))) -> U11(tt())
activate(X) -> X
Proof:
Bounds Processor:
bound: 2
enrichment: match
automaton:
final states: {16,11,10,9,7,6,5,4,3}
transitions:
tt2() -> 11,10,16*,2,5,7,3
__0(2,16) -> 3*
__0(9,2) -> 3*
__0(9,10) -> 3*
__0(9,16) -> 3*
__0(10,1) -> 3*
__0(10,9) -> 3*
__0(16,2) -> 3*
__0(1,2) -> 3*
__0(16,10) -> 3*
__0(1,10) -> 3*
__0(16,16) -> 3*
__0(1,16) -> 3*
__0(2,1) -> 3*
__0(2,9) -> 3*
__0(9,1) -> 3*
__0(9,9) -> 3*
__0(10,2) -> 3*
__0(10,10) -> 3*
__0(10,16) -> 3*
__0(16,1) -> 3*
__0(1,1) -> 3*
__0(16,9) -> 3*
__0(1,9) -> 3*
__0(2,2) -> 3*
__0(2,10) -> 3*
nil0() -> 9*,3,7,1
U110(10) -> 4*
U110(2) -> 4*
U110(9) -> 4*
U110(16) -> 4*
U110(1) -> 4*
U120(9) -> 5*
U120(1) -> 5*
isNePal0(10) -> 6*
isNePal0(2) -> 6*
isNePal0(9) -> 6*
isNePal0(16) -> 6*
isNePal0(1) -> 6*
activate0(10) -> 7*
activate0(2) -> 7*
activate0(9) -> 7*
activate0(16) -> 7*
activate0(1) -> 7*
U121(10) -> 11*
U121(2) -> 11*,5,4
U121(16) -> 11*
1 -> 7,3
2 -> 7,3
9 -> 7,3
10 -> 7,3
16 -> 7,3
problem:
Qed