We consider the following Problem:
Strict Trs:
{ c(c(z, y, a()), a(), a()) -> b(z, y)
, f(c(x, y, z)) -> c(z, f(b(y, z)), a())
, b(z, b(c(a(), y, a()), f(f(x)))) -> c(c(y, a(), z), z, x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ c(c(z, y, a()), a(), a()) -> b(z, y)
, f(c(x, y, z)) -> c(z, f(b(y, z)), a())
, b(z, b(c(a(), y, a()), f(f(x)))) -> c(c(y, a(), z), z, x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
We consider the following Problem:
Strict Trs:
{ c(c(z, y, a()), a(), a()) -> b(z, y)
, f(c(x, y, z)) -> c(z, f(b(y, z)), a())
, b(z, b(c(a(), y, a()), f(f(x)))) -> c(c(y, a(), z), z, x)}
StartTerms: basic terms
Strategy: innermost
Certificate: YES(?,O(n^1))
Proof:
The following argument positions are usable:
Uargs(c) = {1, 2}, Uargs(b) = {}, Uargs(f) = {1}
We have the following constructor-based EDA-non-satisfying and IDA(1)-non-satisfying matrix interpretation:
Interpretation Functions:
c(x1, x2, x3) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [0]
[1 0] [0 0] [2 1] [2]
a() = [1]
[0]
b(x1, x2) = [1 0] x1 + [1 0] x2 + [0]
[0 0] [1 0] [0]
f(x1) = [1 2] x1 + [1]
[1 1] [2]
Hurray, we answered YES(?,O(n^1))