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Automatically Proving Termination and Memory Safety for
Programs with Pointer Arithmetic
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Peter Schneider-Kamp · Cornelius Aschermann

Abstract While automated verification of imperative programs has been studied intensively,
proving termination of programs with explicit pointer arithmetic fully automatically was still
an open problem. To close this gap, we introduce a novel abstract domain that can track
allocated memory in detail. We use it to automatically construct a symbolic execution graph
that over-approximates all possible runs of the program and that can be used to prove memory
safety. This graph is then transformed into an integer transition system, whose termination
can be proved by standard techniques. We implemented this approach in the automated
termination prover AProVE and demonstrate its capability of analyzing C programs with
pointer arithmetic that existing tools cannot handle.
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1 Introduction

Consider the following standard C implementation of strlen [42,49], computing the length
of the string at the pointer str. In C, strings are usually represented as a pointer str to
the heap, where all following memory cells up to the first one that contains the value 0 are
allocated memory and form the value of the string.

int strlen(char* str) {char* s = str; while(*s) s++; return s-str;}

To analyze algorithms on such data, one has to handle the interplay between addresses
and the values they point to. In C, a violation of memory safety (e.g., dereferencing NULL,
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accessing an array outside its bounds, etc.) leads to undefined behavior, which may also
include non-termination. Thus, to prove termination of C programs with low-level memory
access, one must also ensure memory safety. The strlen algorithm is memory safe and
terminates, because there is some address end≥ str (an integer property of end and str)
such that *end is 0 (a pointer property of end) and all addresses str≤ s≤ end are allocated.
Other typical programs with pointer arithmetic operate on arrays (which are just sequences
of memory cells in C). In this paper, we present a novel approach to prove memory safety
and termination of algorithms on integers and pointers automatically. Our abstract domain is
tailored to track both integer properties which relate allocated memory addresses with each
other, as well as pointer properties about the data stored at such addresses.

To avoid handling the intricacies of C, we analyze programs in the platform-indepen-
dent intermediate representation (IR) of the LLVM compilation framework [33,35]. Our
approach works in three steps: First, a symbolic execution graph is created that represents
an over-approximation of all possible program runs. We present our abstract domain based
on separation logic [41] and the automated construction of such graphs in Sect. 2. In this
step, we handle all issues related to memory, and in particular we prove memory safety of
our input program. In Sect. 3, we describe the second step of our approach, in which we
generate an integer transition system (ITS) from the symbolic execution graph, encoding the
essential information needed to show termination. In the last step, existing techniques for
integer programs are used to prove termination of the resulting ITS. In Sect. 4, we compare
our approach with related work and show that our implementation in the termination prover
AProVE proves memory safety and termination of typical pointer algorithms that could not
be handled by other tools before.

A preliminary version of parts of this paper was published in [46]. The present paper
extends [46] by the following new contributions:

– We lift the restriction of analyzing only programs with exactly one function to non-
recursive programs with several functions.

– We show how to consider alignment information in the abstract domain. In [46], we just
assumed a 1 byte data alignment for all types.

– In [46], we only handled memory allocation using the LLVM instruction alloca. In
this paper, we extend our abstract domain and our symbolic execution rules to handle
the external functions malloc and free. This allows us to model memory safety more
precisely. Up to now, we could only prove absence of accesses to unallocated memory,
whereas now, we can also show that free is only called for addresses that have been
returned by malloc and that have not been released already. Note that if memory is not
released by the end of the program, then we do not consider this as a violation of memory
safety, because it does not lead to undefined behavior.

– We added more symbolic execution rules for LLVM instructions, and give a detailed
overview of our limitations in Sect. 4.

– To represent all possible program runs by a finite symbolic execution graph, it is crucial
to merge abstract program states that visit the same program position. We have substan-
tially improved the merging heuristic of [46] in order to also analyze programs where
termination or memory safety depend on invariants relating different areas of allocated
memory. Such reasoning is required for programs like the strcpy function from the
standard C library. Our symbolic execution can now handle such programs automatically,
whereas [46] fails to prove memory safety (and hence also termination).

– We prove the soundness of our approach w.r.t. the formal LLVM semantics from [50],
and provide all proofs in the paper.
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2 From LLVM to Symbolic Execution Graphs

In Sect. 2.1, we introduce concrete LLVM states and abstract states that represent sets of
concrete states. Based on this, Sect. 2.2 shows how to construct symbolic execution graphs
automatically. Sect. 2.3 presents our algorithm to generalize states, needed to always obtain
finite symbolic execution graphs. In Sect. 2.4 we then show correctness of our construction.

To simplify the presentation, we restrict ourselves to types of the form in (for n-bit inte-
gers), in* (for pointers to values of type in), in**, in***, etc. Like many other approaches
to termination analysis, we disregard integer overflows and assume that variables are only
instantiated with signed integers appropriate for their type.

2.1 Abstract Domain

define i32 @strlen(i8* str) {

entry: 0: c0 = load i8* str
1: c0zero = icmp eq i8 c0, 0
2: br i1 c0zero, label done, label loop

loop: 0: olds = phi i8* [str,entry],[s,loop]
1: s = getelementptr i8* olds, i32 1
2: c = load i8* s
3: czero = icmp eq i8 c, 0
4: br i1 czero, label done, label loop

done: 0: sfin = phi i8* [str,entry],[s,loop]
1: sfinint = ptrtoint i8* sfin to i32
2: strint = ptrtoint i8* str to i32
3: size = sub i32 sfinint, strint
4: ret i32 size }

We consider the strlen function
from Sect. 1. In the corresponding
LLVM code,1 str has the type i8*,
since it is a pointer to the string’s
first character (of type i8). The pro-
gram is split into the basic blocks
entry, loop, and done. We will
explain this LLVM code in detail
when constructing the symbolic execution graph in Sect. 2.2.

An LLVM state consists of a call stack, a knowledge base with information about the val-
ues of symbolic variables, and two sets which describe memory allocations and the contents
of memory. The call stack is a sequence of stack frames, where each stack frame contains
information local to its corresponding function. In particular, a stack frame contains the
current program position which is represented by a pair (b, j). Here, b is the name of the
current basic block and j is the index of the next instruction. So if Blks is the set of all basic
blocks, then the set of program positions is Pos = Blks×N. To ease the formalization, we
assume that different functions do not have basic blocks with the same names. Moreover, a
stack frame also contains information on the current values of the local program variables.
We represent an assignment to the local variables VP (e.g., VP = {str,c0, . . .}) in the i-th
stack frame as a partial function LV i : VP ⇀ Vsym (where “⇀” denotes partial functions).
We use an infinite set of symbolic variables Vsym with Vsym ∩VP = {} instead of concrete
integers. In this way, our states can represent not only concrete execution states, where all
symbolic variables v∈Vsym are constrained to a concrete fixed number in Z, but also abstract
states, where v can stand for several possible values. Such states will be needed for symbolic
execution. To ease the generalization of states in Sect. 2.3, we require that all LV i occurring
in a call stack are injective and have pairwise disjoint ranges. Let Vsym(LV i)⊆ Vsym be the
set of all symbolic variables v where there exists some x ∈ VP with LV i(x) = v.

In addition to the values of local variables, each stack frame also contains an allocation
list ALi. This list contains expressions of the form Jv1, v2K for v1,v2 ∈ Vsym, which indicate
that v1 ≤ v2 and that all addresses between v1 and v2 have been allocated by an alloca

instruction. This information is stored in the stack frames, as memory allocated by alloca

in a function is automatically released when the control flow returns from that function.

1 This LLVM program corresponds to the code obtained from strlen with the Clang compiler [14]. To
ease readability, we wrote variables without “%” in front (i.e., we wrote “str” instead of “%str” as in proper
LLVM) and added line numbers.
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A program position, a variable assignment and an allocation list form a stack frame FR,
and we represent call stacks as sequences [FR1, . . . ,FRn] of such stack frames, where the
i-th stack frame has the form FRi = (pi,LV i,ALi). The topmost frame is FR1, and we use
“·” to decompose call stacks, i.e., [FR1, . . . ,FRn] = FR1 · [FR2, . . . ,FRn]. A new stack frame
is added in front of the sequence whenever a function is called, and removed when control
returns from it. For any call stack CS = [FR1, . . . ,FRn] where each stack frame FRi uses
the partial function LV i for the local variables, let Vsym(CS) consist of Vsym(LV1)∪ . . .∪
Vsym(LVn) and all symbolic variables occurring in AL1, . . . , or ALn.

The second component of our LLVM states is the knowledge base KB⊆ QF IA(Vsym), a
set of quantifier-free first-order formulas that express integer arithmetic properties of Vsym.
For concrete states, the knowledge base constrains Vsym(CS) in such a way that their values
are uniquely determined, whereas for abstract states several values are possible.

The third component is the global allocation list AL. It is used to model memory allocated
by malloc, where allocated parts of the memory are again represented by expressions of
the form Jv1, v2K. In contrast to alloca, memory allocated by malloc needs to be released
explicitly by the programmer. In this paper, we assume that reading from memory locations
that are currently allocated but not initialized, yields an arbitrary fixed value. To remove this
assumption, a structure similar to AL could be used to track initialized memory regions.

As the fourth and final component, PT is a set of “points-to” atoms v1 ↪→ty v2 where
v1,v2 ∈ Vsym and ty is an LLVM type. This means that the value v2 of type ty is stored
at the address v1. Let size(ty) be the number of bytes required for values of type ty (e.g.,
size(i8) = 1 and size(i32) = 4). As each memory cell stores one byte, v1 ↪→i32 v2 means
that v2 is stored in the four cells at the addresses v1, . . . ,v1 + 3. The size of a pointer type
ty* is determined by the data layout string in the beginning of an LLVM program. On 64-bit
machine architectures, we usually have size(ty*) = 8, and on 32-bit architectures we usually
have size(ty*) = 4. In the following let us consider some fixed value for size(ty*).

Finally, to model possible violations of memory safety, we introduce a special state ERR.
In particular, this state is reached when accessing non-allocated memory. The following
definition introduces our notion of (possibly abstract) LLVM states formally.

Definition 1 (LLVM States) LLVM states have the form (CS,KB,AL,PT) where CS ∈
(Pos× (VP ⇀ Vsym)× {Jv1, v2K | v1,v2 ∈ Vsym})∗, KB ⊆ QF IA(Vsym), AL ⊆ {Jv1, v2K |
v1,v2 ∈ Vsym}, and PT ⊆ {(v1 ↪→ty v2) | v1,v2 ∈ Vsym, ty is an LLVM type}. Additionally,
there is a state ERR for possible memory safety violations. For a state a = (CS,KB,AL,PT),
let Vsym(a) consist of Vsym(CS) and all symbolic variables occurring in KB, AL, or PT .

In a call stack CS = [(p1,LV1,AL1), . . . ,(pn,LVn,ALn)], we often identify the mapping
LV i with the set of equations {xi = LV i(x) | x ∈ VP ,LV i(x) is defined} and extend LV i to
a function from VP ]Z to Vsym ]Z by defining LV i(n) = n for all n ∈ Z. We also often
identify CS with the set of equations

⋃
1≤i≤n{xi = LV i(x) | x ∈ VP ,LV i(x) is defined}. Let

V fr
P = {xi | x ∈ VP , i ∈N>0} be the set of all these indexed variables that we use to represent

stack frames. Moreover, we write AL∗ for the union of the global allocation list with the
allocation lists in the individual stack frames, i.e., AL∗ = AL∪AL1 ∪ . . .∪ALn. Thus, AL∗

represents all currently allocated memory (by alloca or malloc) in the current state. We
say that a state (CS,KB,AL,PT) is garbage-free iff for every “points-to” information v ↪→ty

w ∈ PT , there is an allocated area Jv1, v2K in AL∗ such that |= KB⇒ v1 ≤ v∧ v≤ v2. So PT
only contains information about addresses that are known to be allocated.

As an example, consider the following abstract state for our strlen program:

( [( (entry,0), {str1 = ustr}, {} )], {z = 0}, {Justr, vendK}, {vend ↪→i8 z} ) (†)
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It represents states at the beginning of the entry block, where CS = [((entry,0),LV1,{})]
with LV1(str) = ustr and no memory was allocated by alloca. Due to an earlier call of
malloc, the memory cells between LV1(str) = ustr and vend are allocated on the heap, and
the value at the address vend is z (where the knowledge base implies z = 0).

To define the semantics of abstract states a, we introduce the formulas 〈a〉SL and 〈a〉FO.
Here, 〈a〉SL is a formula from a fragment of separation logic [41] that defines which concrete
states are represented by a. The first-order formula 〈a〉FO is a weakened version of 〈a〉SL,
used for the automation of our approach. We use it to construct symbolic execution graphs,
as it allows us to apply standard SMT solving [40] for all reasoning. We also use 〈a〉FO for
the subsequent generation of integer transition systems from symbolic execution graphs.

The formula 〈a〉FO contains KB, and in addition, it expresses that the pairs Jv1, v2K in
allocation lists represent disjoint intervals. Moreover, two values at the same address must
be equal and two addresses must be different if they point to different values in PT . Finally,
all addresses are positive numbers.

Definition 2 (Representing States by FO Formulas) The set 〈a〉FO is the smallest set with

〈a〉FO = KB ∪ {1≤ v1∧ v1 ≤ v2 | Jv1, v2K ∈ AL∗} ∪
{v2 < w1∨w2 < v1 | Jv1, v2K,Jw1, w2K ∈ AL∗, (v1,v2) 6= (w1,w2)} ∪
{v2 = w2 | (v1 ↪→ty v2),(w1 ↪→ty w2) ∈ PT and |= 〈a〉FO⇒ v1 = w1} ∪
{v1 6= w1 | (v1 ↪→ty v2),(w1 ↪→ty w2) ∈ PT and |= 〈a〉FO⇒ v2 6= w2} ∪
{v1 > 0 | (v1 ↪→ty v2) ∈ PT}.

Now we formally define the notion of concrete states as abstract states of a particular
form. The idea is that a concrete state c uniquely describes the call stack and the contents
of the memory. We require that (a) 〈c〉FO must be satisfiable to ensure that c actually can
represent something, and that (b) c must have unique values for the contents of all allocated
addresses. Here, we represent memory data byte-wise, and since LLVM represents values in
two’s complement, each byte stores a value from [−27,27−1]. This byte-wise representation
of the memory enforces a uniform representation of concrete states, and thus (c) we allow
only statements of the form w1 ↪→i8 w2 in PT for concrete states. Finally, (d) all occurring
symbolic variables must have unique values.

Definition 3 (Concrete States) Let c = (CS,KB,AL,PT) be an LLVM state. We call c a
concrete state iff c is garbage-free and all of the following conditions hold:

(a) 〈c〉FO is satisfiable,
(b) for all Jv1, v2K ∈ AL∗ and for all integers n with |= 〈c〉FO⇒ v1 ≤ n∧n≤ v2, there exists

(w1 ↪→i8 w2) ∈ PT for some w1,w2 ∈ Vsym such that |= 〈c〉FO⇒ w1 = n and |= 〈c〉FO⇒
w2 = k for some k ∈ [−27,27−1],

(c) there is no w1 ↪→ty w2 ∈ PT for ty 6= i8,
(d) for all v ∈ Vsym(c) there exists an n ∈ Z such that |= 〈c〉FO⇒ v = n.

Moreover, ERR is also a concrete state.

A state a 6= ERR always stands for a memory-safe state where exactly the addresses in
AL∗ are allocated. Let→LLVM be LLVM’s evaluation relation on concrete states, i.e., c→LLVM

c holds iff c evaluates to c by executing one LLVM instruction. Similarly, c→LLVM ERR
means that the evaluation step performs an operation that may lead to undefined behavior.
An LLVM program is memory safe for c 6= ERR iff there is no evaluation c→+

LLVM ERR,
where→+

LLVM is the transitive closure of→LLVM.
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To formalize the semantics of an abstract state a, i.e., to define which concrete states are
represented by a, we now introduce the separation logic formula 〈a〉SL. In 〈a〉SL, we combine
the elements of AL∗ with the separating conjunction “∗” to express that different allocated
memory blocks are disjoint. Here, as usual ϕ1∗ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts
of the memory. In contrast, the elements of PT are combined by the ordinary conjunction
“∧”. So (v1 ↪→ty v2) ∈ PT does not imply that v1 is different from other addresses occurring
in PT . Similarly, we also combine the two formulas resulting from AL∗ and PT by “∧”, as
both express different properties of the same memory addresses.

Definition 4 (Representing States by SL Formulas) For v1,v2 ∈ Vsym, let 〈Jv1, v2K〉SL =

1≤ v1 ∧ v1 ≤ v2 ∧ (∀x.∃y. (v1 ≤ x≤ v2)⇒ (x ↪→ y)).

Reflecting two’s complement representation, for any LLVM type ty, we define 〈v1 ↪→ty v2〉SL =

v1 > 0 ∧ 〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 +28·size(ty)),

where v3 ∈ Vsym is fresh. We assume a little-endian data layout (where least significant bytes
are stored in the lowest address).2 Here, we let 〈v1 ↪→0 v3〉SL = true and 〈v1 ↪→n+1 v3〉SL =
(v1 ↪→ (v3 mod 28)) ∧ 〈(v1 +1) ↪→n (v3 div 28)〉SL.

Let a = (CS,KB,AL,PT) be an abstract state. It is represented in separation logic by3

〈a〉SL = CS ∧ KB ∧ (∗ϕ∈AL∗ 〈ϕ〉SL) ∧ (
∧

ϕ∈PT
〈ϕ〉SL)

The semantics of separation logic can now be defined using interpretations of the form
(s,m) which represent the values of the program variables and the heap. In our setting, a
(partial) function s : V fr

P ⇀ Z is used to describe the values of the program variables (more
precisely, s operates on variables of the form xi to represent the variable x ∈ VP occurring
in the i-th stack frame). Moreover, a partial function m : N>0 ⇀ {0, . . . ,28−1} with finite
domain describes the memory contents at allocated addresses (as unsigned bytes).

To deal with symbolic variables in formulas, we use instantiations. Let T (Vsym) be the set
of all arithmetic terms containing only variables from Vsym. Any function σ :Vsym→ T (Vsym)

is called an instantiation. Thus, σ does not instantiate V fr
P . Instantiations are extended to

formulas in the usual way, i.e., σ(ϕ) instantiates every free occurrence of v ∈ Vsym in ϕ by
σ(v). An instantiation is called concrete iff σ(v) ∈ Z for all v ∈ Vsym.

Definition 5 (Semantics of Separation Logic) Let s : V fr
P ⇀ Z, m : N>0 ⇀ {0, . . . ,28−1},

and let ϕ be a formula such that s is defined on all variables from V fr
P that occur in ϕ . Let

s(ϕ) result from replacing all xi in ϕ by the value s(xi). Note that by construction, local
variables xi are never quantified in our formulas. Then we define (s,m) |= ϕ iff m |= s(ϕ).

We now define m |= ψ for formulas ψ that may contain symbolic variables from Vsym
(this is needed for Sect. 2.2). As usual, all free variables v1, . . . ,vn in ψ are implicitly univer-
sally quantified, i.e., m |= ψ iff m |= ∀v1, . . . ,vn.ψ . The semantics of arithmetic operations
and predicates as well as of first-order connectives and quantifiers are as usual. In particu-
lar, we define m |= ∀v.ψ iff m |= σ(ψ) holds for all instantiations σ where σ(v) ∈ Z and
σ(w) = w for all w ∈ Vsym \{v}.

2 A corresponding representation could also be defined for big-endian layout. This layout information is
necessary to decide which concrete states are represented by abstract states, but it is not used when constructing
symbolic execution graphs (i.e., our remaining approach is independent of such layout information).

3 We identify sets of first-order formulas {ϕ1, ...,ϕn} with their conjunction ϕ1∧ ...∧ϕn. Thus, CS is identi-
fied with the set resp. with the conjunction of the equations

⋃
1≤i≤n{xi = LV i(x) | x ∈ VP ,LV i(x) is defined}.
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We still have to define the semantics of ↪→ and ∗ for variable-free formulas. For n1,n2 ∈Z,
let m |= n1 ↪→ n2 hold iff m(n1) = n2.4 The semantics of ∗ is defined as usual in separation
logic: For two partial functions m1,m2 : N>0 ⇀ Z, we write m1⊥m2 to indicate that the
domains of m1 and m2 are disjoint. If m1⊥m2, then m1]m2 denotes the union of m1 and m2.
Now m |= ϕ1 ∗ϕ2 holds iff there exist m1⊥m2 such that m = m1 ]m2 where m1 |= ϕ1 and
m2 |= ϕ2. As usual, “|= ϕ” means that ϕ is a tautology, i.e., that (s,m) |= ϕ holds for any
interpretation (s,m).

Clearly, we have |= 〈a〉SL⇒ 〈a〉FO for any abstract state a. So 〈a〉FO only contains first-
order information that holds in every concrete state represented by a.

Now we can define which concrete states are represented by an abstract state. Note that
due to Def. 3, we can extract an interpretation (sc,mc) from every concrete state c 6= ERR.
Then we define that a (garbage-free) abstract state a represents all those concrete states c
where (sc,mc) is a model of some (concrete) instantiation of a.

Definition 6 (Representing Concrete by Abstract States) Let c = (CSc,KBc,ALc,PTc)
be a concrete state where CSc uses the functions LVc

1, . . . ,LVc
n. For every x ∈ VP where

LVc
i (x) is defined, let sc(xi) = n for the number n ∈ Z with |= 〈c〉FO⇒ LVc

i (x) = n.
For n ∈ N>0, the function mc(n) is defined iff there exists a w1 ↪→i8 w2 ∈ PT such that

|= 〈c〉FO⇒ w1 = n. Let |= 〈c〉FO⇒ w2 = k for k ∈ [−27,27−1]. Then we have mc(n) = k
if k ≥ 0 and mc(n) = k+28 if k < 0.

We say that an abstract state a = ([(p1,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)
represents a concrete state c = ([(p1,LVc

1,ALc
1), . . . ,(pn,LVc

n,ALc
n)],KBc,ALc,PTc) iff a is

garbage-free and (sc,mc) is a model of σ(〈a〉SL) for some concrete instantiation σ of the
symbolic variables. The only state that represents the error state ERR is ERR itself.

So the abstract state (†) from the strlen program represents all concrete states c =
([((entry,0),LV1,{})],KB,AL,PT) where mc stores a string at the address sc(str1).5

2.2 Constructing Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that over-approxi-
mates all possible executions of a given program. For this, we present symbolic execution
rules for some of the most important LLVM instructions. We start with the rules for the LLVM
instructions in our strlen example in Sect. 2.2.1. In Sect. 2.2.2, we then present rules for a
more advanced example including memory allocation and function calls.

While there already exist approaches for symbolic execution of C or LLVM programs
(e.g., by the tools KLEE [12] and Ufo [1]), our new abstract domain is particularly suitable for
tracking explicit information about memory allocations and the contents of memory, allowing
a fully automated analysis of programs with direct memory access and pointer arithmetic.
Most other existing tools cannot successfully analyze termination of such programs fully
automatically without the specification of invariants by the user. In particular, we also have
rules for refining and generalizing abstract states. This is needed to obtain finite symbolic
execution graphs that represent all possible executions.

4 We use “↪→” instead of “ 7→” in separation logic, since m |= n1 7→ n2 would imply that m(n) is undefined
for all n 6= n1. This would be inconvenient in our formalization, since PT usually only contains information
about a part of the allocated memory.

5 The reason is that then there is an address end ∈N>0 with end ≥ sc(str1) such that mc(end) = 0 and mc

is defined for all numbers between sc(str1) and end. Hence if a is the state in (†), then mc |= σ(〈a〉SL) holds
for any instantiation σ with σ(ustr) = sc(str1), σ(vend) = end, and σ(z) = 0.
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[((entry,0), {str1 = ustr, . . .},{})], {. . .}, {vend ↪→ 0}A

[((entry,1), {str1 = ustr,c01 = v1, . . .},{})], {. . .}, {ustr ↪→ v1,vend ↪→ 0}B

[((entry,1), {str1 = ustr,c01 = v1, . . .},{})],
{v1 = 0, . . .}, {. . .}

C [((entry,1), {str1 = ustr,c01 = v1, . . .},{})],
{v1 6= 0, . . .}, {ustr ↪→ v1,vend ↪→ 0}

D

. . .
[((entry,2), {str1 = ustr,c0zero1 = v2, . . .},{})], {v2 = 0, . . .}, {vend ↪→ 0, . . .}E

[((loop,1), {str1 = ustr,olds1 = v3, . . .},{})], {v3 = ustr, . . .}, {vend ↪→ 0, . . .}F

[((loop,2), {str1 = ustr,s1 = v4, . . .},{})], {v4 = v3 +1,v3 = ustr, . . .}, {vend ↪→ 0, . . .}G

[((loop,3), {str1 = ustr,c1 = v5,s1 = v4, . . .},{})], {. . .}, {v4 ↪→ v5,vend ↪→ 0, . . .}H

[((loop,3), {str1 = ustr,c1 = v5, . . .},{})],
{v5 = 0, . . .}, {. . .}

I

. . .

[((loop,3), {str1 = ustr,c1 = v5,s1 = v4, . . .},{})],
{v5 6= 0, . . .}, {v4 ↪→ v5,vend ↪→ 0, . . .}

J

[((loop,4), {str1 = ustr,czero1 = v6,c1 = v5,s1 = v4,olds1 = v3, . . .},{})],
{v5 6= 0,v6 = 0,v4 = v3 +1,v3 = ustr, . . .}, {v4 ↪→ v5,vend ↪→ 0, . . .}

K

[((loop,4), {str1 = vstr,c1 = vc,s1 = vs,olds1 = volds, . . .},{})],
{vc 6= 0,vs = volds+1,volds ≥ vstr,vs < vend , . . .}, {vs ↪→ vc,vend ↪→ 0, . . .}

L

[((loop,3), {str1 = vstr,c1 = wc,s1 = ws,olds1 = wolds, . . .},{})],
{ws = wolds+1,wolds = vs,vs < vend , . . .}, {ws ↪→ wc,vend ↪→ 0, . . .}

M

. . .
[((loop,4), {str1 = vstr,c1 = wc,s1 = ws,olds1 = wolds, . . .},{})],
{wc 6= 0,ws =wolds+1,wolds = vs,vs < vend , . . .}, {ws ↪→wc,vend ↪→ 0, . . .}

N

Fig. 1 Symbolic execution graph for strlen

2.2.1 Basic Symbolic Execution Rules

Our analysis starts with the set of initial states that one wants to analyze for termination, e.g.,
all states where str points to a string. So in our example, we start with the abstract state (†).
Fig. 1 depicts the symbolic execution graph for strlen. Here, we omitted the component
AL = {Justr, vendK} for the global allocation list, which stays the same in all states in this
example. We also abbreviated parts of CS, KB, and PT by “. . . ”. Instead of vend ↪→i8 z and
z = 0, we directly wrote vend ↪→ 0, etc.

The function strlen starts with loading the character at address str to c0. Let p : ins
denote that ins is the instruction at position p. Our first rule handles the case p : “x = load

ty* ad”, i.e., the value of type ty at the address ad is assigned to the variable x. In our
rules, let a always denote the state before the execution step (i.e., above the horizontal line
of the rule). Moreover, we write 〈a〉 instead of 〈a〉FO. As each memory cell stores one byte,
in the load-rule we first have to check whether the addresses ad, . . . ,ad+ size(ty)−1 are
allocated, i.e., whether there is a Jv1, v2K ∈ AL∗ such that 〈a〉⇒ (v1 ≤ LV1(ad) ∧ LV1(ad)+
size(ty)−1≤ v2) is valid. Then, we reach a new state where the previous position p = (b, i)
is updated to the position p+ = (b, i+1) of the next instruction in the same basic block, and
we set LV1(x) = w for a fresh w ∈ Vsym. Here we write LV1[x := w] for the function where
(LV1[x := w])(x) = w and for y 6= x, we have (LV1[x := w])(y) = LV1(y). Moreover, we
add LV1(ad) ↪→ty w to PT . Thus, if PT already contained a formula LV1(ad) ↪→ty w′, then
〈a〉 implies w = w′. We used this rule to obtain B from A in Fig. 1.

In memory access instructions such as load, one can also specify an optional alignment
al which indicates that the respective addresses are divisible by al. This alignment informa-
tion is generated by the LLVM code emitter (e.g., by the compiler from C to LLVM). It is
meant as a hint to the code generator (which transforms LLVM code into machine code) that
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the address will be at the specified alignment. The code generator may use this information
for code optimizations.

Note in the rules that LV1 is a partial function. So in general, LV1 is not defined for all
x ∈ VP . However, according to [35], in well-formed LLVM programs all uses of a variable
must be dominated by its definition. Thus, LV1(x) is always defined when we read from x

during symbolic execution.

load from allocated memory (p : “x = load ty* ad [, align al]” with x,ad ∈ VP , al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := w], AL1) ·CS, KB, AL, PT ∪{LV1(ad) ↪→ty w})
if

• there is Jv1, v2K ∈ AL∗ with |= 〈a〉 ⇒ (v1 ≤ LV1(ad) ∧ LV1(ad)+ size(ty)−1≤ v2),
• |= 〈a〉 ⇒ (LV1(ad) mod al= 0), if an alignment al≥ 1 is specified,
• w ∈ Vsym is fresh

In a similar way, one can also formulate a rule for store instructions that store a value
at some address in the memory. The instruction “store ty t, ty* ad” stores the value t
of type ty at the address ad. Again, we check whether LV1(ad), . . . ,LV1(ad)+ size(ty)−1
are addresses in an allocated part of the memory. Of course, the information that ad now
points to t should be added to the set PT . All other information in PT that is not influenced
by this change can be kept.6

store to allocated memory (p : “store ty t, ty* ad [, align al]”, t∈VP∪Z, ad∈VP , al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1, AL1) ·CS, KB∪{w = LV1(t)}, AL, PT ′ ∪{LV1(ad) ↪→ty w})
if

• there is Jv1, v2K∈AL∗ with |= 〈a〉 ⇒ (v1 ≤ LV1(ad) ∧ LV1(ad)+size(ty)−1≤ v2),
• PT ′ = {(w1 ↪→sy w2) ∈ PT | |= 〈a〉 ⇒ (JLV1(ad), LV1(ad)+size(ty)−1K⊥ Jw1, w1+size(sy)−1K)},
• |= 〈a〉 ⇒ (LV1(ad) mod al= 0), if an alignment al≥ 1 is specified,
• w ∈ Vsym is fresh

If load or store accesses an address that was not allocated, then memory safety is
violated and we reach the ERR state. The same holds if the address does not correspond to
the specified alignment.

load or store on unallocated memory (p : “x = load ty* ad [, align al]” with x,ad ∈ VP
and al ∈ N, or p : “store ty t, ty* ad [, align al]” with t∈VP∪Z, ad∈VP , and al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if

there is no Jv1, v2K∈AL∗ with |= 〈a〉 ⇒ (v1 ≤ LV1(ad)∧LV1(ad)+size(ty)−1≤ v2)

load or store with unsafe alignment (p : “x = load ty* ad, align al” with x,ad ∈ VP
and al ∈ N>0, or p : “store ty t, ty* ad, align al” with t∈VP∪Z, ad∈VP , and al ∈ N>0)

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if 6|= 〈a〉 ⇒ (LV1(ad) mod al= 0)

6 For any terms, “Jt1, t2K⊥ Jt1, t2K” is a shorthand for t2 < t1 ∨ t2 < t1.
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The instructions icmp and br in strlen’s entry block check if the first character c0 is
0. In that case, we have reached the end of the string and jump to the block done. Thus, we
now introduce a rule for integer comparison. For “x = icmp eq ty t1, t2”, we check if
the state contains enough information to decide whether the values t1 and t2 of type ty are
equal. In that case, the value 1 resp. 0 (i.e., true resp. false) is assigned to x.

icmp (p : “x = icmp eq ty t1, t2” with x ∈ VP and t1, t2 ∈ VP ∪Z)

((p,LV1, AL1) ·CS, KB, AL, PT)

((p+,LV1[x := w], AL1) ·CS, KB∪{w = 1}, AL, PT)

if |= 〈a〉 ⇒ (LV1(t1) = LV1(t2))
and w ∈ Vsym is fresh

((p,LV1, AL1) ·CS, KB, AL, PT)

((p+,LV1[x := w], AL1) ·CS, KB∪{w = 0}, AL, PT)

if |= 〈a〉 ⇒ (LV1(t1) 6= LV1(t2))
and w ∈ Vsym is fresh

Other integer comparisons (for <, ≤, . . . ) are handled analogously. Note that LLVM
always represents integers in two’s complement, as does the knowledge base in our states.
However, some instructions explicitly consider values in an unsigned way, and this needs
to be reflected in our evaluation rules. As an example, suppose that |= 〈a〉 ⇒ v = −27 ∧
w = 27− 1. Then signed comparison yields v < w, but unsigned comparison yields v > w,
because v is stored as (10000000), whereas w is stored as (01111111). So for an unsigned
comparison, we check whether the two values to be compared are either both positive or both
negative, i.e., have the same sign. In this case, the comparison on the unsigned interpretation
coincides with the signed comparison. For different signs, negative numbers (like v =−27)
are always greater than positive ones (like w = 27−1). As an example, the following rule
illustrates the affirmative case (w = 1) of unsigned less-or-equal (ule).

icmp (p : “x = icmp ule ty t1, t2” with x ∈ VP and t1, t2 ∈ VP ∪Z)

((p,LV1,AL1) ·CS, KB, AL, PT)

((p+,LV1[x := w], AL1) ·CS, KB∪{w = 1}, AL, PT)

if |= 〈a〉 ⇒ (LV1(t1)≤ LV1(t2))∧ (sgn(LV1(t1)) = sgn(LV1(t2))) ∨ (LV1(t1)≥ 0)∧ (LV1(t2)< 0)
and w ∈ Vsym is fresh

The rules for icmp are only applicable if KB contains enough information to evaluate
the respective condition. Otherwise, a case analysis needs to be performed, i.e., one has to
refine the abstract state by extending its knowledge base. This is done by the following rule,
which transforms an abstract state into two new ones.7

refining abstract states (p : “x = icmp eq ty t1, t2”, x ∈ VP , t1, t2 ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p, LV1, AL1) ·CS, KB∪{ϕ}, AL, PT) | ((p, LV1, AL1) ·CS, KB∪{¬ϕ}, AL, PT)

if 6|= 〈a〉⇒ϕ and 6|= 〈a〉⇒¬ϕ and ϕ is LV1(t1)=LV1(t2)

In state B of Fig. 1, we evaluate “c0zero = icmp eq i8 c0, 0”, i.e., we check if the
first character c0 of the string str is 0. Since this cannot be inferred from B’s knowledge
base, we refine B to the successor states C and D and call the edges from B to C and D
refinement edges. In D, we have c0 = v1 and v1 6= 0. Thus, the icmp-rule yields E where
c0zero= v2 and v2 = 0. We do not display the successors of C that lead to a program end.

7 Analogous refinement rules can also be used for other conditional LLVM instructions, e.g., conditional
jumps with br or other cases of icmp.
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The next instruction in our example is “br i1 c0zero, label done, label loop”,
a conditional jump (or branch) to another block. Let us first consider a similar, but simpler
case. The instruction “br label bnext” means that the execution has to continue with the
first instruction in the block bnext. When execution moves from one block to another, in the
new target block one first evaluates the phi instructions that may be present at its beginning.
These instructions are needed due to the static single assignment form of LLVM and initialize
the variables in the target block depending on from which block we are entering the target
block. Such phi instructions may only occur at the beginning of a block, i.e., every block
starts with a (possibly empty) sequence of phi instructions. A phi instruction has the form
“x = phi ty [t1,b1], . . . ,[tn,bn]”, meaning that if the previous block was b j, then the value
t j is assigned to x. All t1, . . . , tn must have type ty. A peculiarity of phi instructions is that
all phi instructions in the same block are executed atomically together. So all local variables
occurring in t1, . . . , tn still have the values that they had before entering the new target block.

To handle phi in combination with the br instruction at the end of the previous block,
we introduce an auxiliary function firstNonPhi. For any block b, firstNonPhi(b) is the in-
dex of the first instruction in block b that is not a phi instruction. Moreover, we define
the function computePhi to implement the parallel execution of all phi statements “x1 =

phi ty1 [t1
1,b

1
1], ..., [t1

n1,b
1
n1]”, . . . , “xm = phi tym [tm

1 ,b
m
1 ], ..., [tm

nm,bm
nm]”

at the start of the block bnext. Its arguments are the current values LV of the local variables,
the current block b j, and the target block bnext, and it returns a pair (LV ′,KBphi), where LV ′

reflects the updated local variables and KBphi contains information on the new symbolic
variables introduced in LV ′:

computePhi(LV,b j,bnext) = (LV[x1 := w1, . . . ,xm := wm], {w1 = LV(t1
j ), . . . ,w

m = LV(tm
j )}),

where w1, . . . ,wm ∈ Vsym are fresh. Now we can define a rule that allows us to perform an
unconditional jump with br to a block bnext and that executes bnext’s phi instructions.

br (p : “br label bnext” with bnext ∈ Blks)

(((b, i), LV1, AL1) ·CS, KB, AL, PT)

(((bnext, j), LV ′1, AL1) ·CS, KB∪KBphi, AL, PT)

if (LV ′1,KBphi) = computePhi(LV1,b,bnext) and j = firstNonPhi(bnext)

For conditional branches “br i1 t, label b1, label b2”, one has to check whether
the current state contains enough information to conclude that t is 1 (i.e., true) or 0 (i.e.,
false). Then the evaluation continues after the phi instructions of block b1 resp. b2.

br (p : “br i1 t, label b1, label b2” with t ∈ VP ∪{0,1} and b1,b2 ∈ Blks)

(((b, i), LV1, AL1) ·CS, KB, AL, PT)

(((b1, j1), LV ′1, AL1) ·CS, KB∪KBphi, AL, PT)

if |= 〈a〉 ⇒ (LV1(t) = 1), (LV ′1,KBphi) = computePhi(LV1,b,b1), j1 = firstNonPhi(b1)

(((b, i), LV1, AL1) ·CS, KB, AL, PT)

(((b2, j2), LV ′1, AL1) ·CS, KB∪KBphi, AL, PT)

if |= 〈a〉 ⇒ (LV1(t) = 0), (LV ′1,KBphi) = computePhi(LV1,b,b2), j2 = firstNonPhi(b2)

With the br instruction, one now jumps to the loop block in State F . Note that we sim-
plified the equalities resulting from computePhi in F , to avoid renaming in the presentation.



12 Thomas Ströder et al.

The strlen function traverses the string using a pointer s, and the loop terminates
when s eventually reaches the last memory cell of the string (containing 0). Then one jumps
to done, converts the pointers s and str to integers, and returns their difference. To perform
the required pointer arithmetic, “bd = getelementptr ty* ad,in t” increases ad by the
size of t elements of type ty (i.e., by size(ty) · t) and assigns this address to bd.8

getelementptr (p :“bd = getelementptr ty* ad,in t”, ad,bd∈VP , t∈VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[bd1 := w], AL1) ·CS, KB∪{w = LV1(ad)+ size(ty) ·LV1(t)}, AL, PT)
if w∈Vsym
is fresh

In Fig. 1, this rule is used for the step from F to G, which implies s = str+1. In the
step to H, the character at address s is loaded to c. To ensure memory safety, the load-rule
checks that s is in an allocated part of the memory (i.e., that ustr ≤ ustr+1 ≤ vend). This
holds because 〈G〉 implies ustr ≤ vend and ustr 6= vend (as ustr ↪→ v1,vend ↪→ 0 ∈ PT and
v1 6= 0 ∈ KB). Finally, we check whether c is 0. We again perform a refinement which yields
the states I and J. State J corresponds to the case c 6= 0 and thus, we obtain czero= 0 in K.

Finally, we present rules for the instructions ptrtoint and sub that are used in the
block done of the strlen example. The ptrtoint instruction simply converts pointers to
integers and is needed to perform subsequent arithmetic operations on them (e.g., to subtract
one address from another in the strlen algorithm). In a similar way, we also have rules to
handle other LLVM instructions for casting between pointers and different types of integers.

ptrtoint (p : “x = ptrtoint ty* ad to in” with x,ad ∈ VP )

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := w], AL1) ·CS, KB∪{w = LV1(ad)}, AL, PT)
if w∈Vsym
is fresh

In sub instructions of the form “x = sub ty t1, t2”, both t1 and t2 must have the
type ty and the variable x also gets this type. We use similar rules to handle other LLVM
instructions for other arithmetic, Boolean, and bit manipulation operations.

sub (p : “x = sub ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := w], AL1) ·CS, KB∪{w = LV1(t1)−LV1(t2)}, AL, PT)
if w∈Vsym
is fresh

2.2.2 Advanced Symbolic Execution Rules

Now we also present rules that allow allocation of memory, function calls, and manipulation
of larger memory chunks. We start with a rule for the alloca statement. The instruction “x =

alloca ty, in t” allocates memory for t elements of the type ty. Here, x is an identifier
from VP of type ty* and t is either an identifier or a natural number. Thus, a new interval
is allocated (i.e., the allocation list AL1 of the current stack frame is extended by Jv1, v2K
for fresh symbolic variables v1,v2) and KB is extended by v2 = v1 + size(ty) ·LV1(t)− 1.
Moreover, the address of the first memory cell in the newly allocated block is assigned to x.
Thus, we update LV1 by x = v1. Again, the code emitter may have added an alignment al.

8 Since we do not consider the handling of struct data structures in this paper, we do not regard
getelementptr instructions with more than two parameters. Note that getelementptr instructions with
just one parameter also suffice for several levels of de-referencing (where memory has to be accessed after
each getelementptr instruction).
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In contrast to load and store, it is not designed as a hint for the code generator but as a
requirement that the result of the allocation must be at least al-aligned. If no alignment is
specified or al= 0, one uses the alignment align(ty) specified by the ABI (application binary
interface) of the target machine and operating system. The code emitter writes information
on the ABI alignment of pointers and the most common integer, vector, and floating point
types in the header of the LLVM program. For all remaining types, the ABI alignment is
computed from these given alignments. Allocating 0 bytes results in undefined behavior,
which may therefore violate memory safety and affect the termination behavior.

alloca (p : “x = alloca ty, in t [, align al]” with x ∈ VP , t ∈ VP ∪Z, and al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v1], AL1 ∪{Jv1, v2K}) ·CS, KB′ ∪{v2 = v1 + size(ty) ·LV1(t)−1}, AL, PT)
if

• we have |= 〈a〉 ⇒ (LV1(t)> 0),
• KB′ = KB∪{v1 mod c = 0}, where c = al, if al≥ 1 is specified, or else c = align(ty),
• v1,v2 ∈ Vsym are fresh

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if 6|= 〈a〉 ⇒ (LV1(t)> 0)

Note that alloca is used to allocate memory on the stack, whereas malloc and free

are used for allocation and release of memory on the heap. The latest versions of LLVM do
not have built-in malloc or free instructions anymore, but one has to call them as external
functions (provided by the standard C library). To allow the handling of LLVM programs
that call malloc or free, we use the following two inference rules. The rule for malloc
mainly differs from the rule for alloca by placing the newly allocated memory region into
the global allocation list instead of the allocation list of the current stack frame. Here, “x
= call i8* @malloc(in t)” allocates t bytes and the address of the first memory cell in
this block is assigned to x. Depending on the processor architecture of the target machine,
the allocated memory is 8-byte or 16-byte aligned. Our symbolic execution rule for malloc
currently does not take into account that malloc may also return NULL without allocating
any memory. However, we could easily add support for this by introducing a corresponding
second successor state for this possible outcome.

malloc (p : “x = call i8* @malloc(in t)” with x ∈ VP and t ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v1], AL1) ·CS, KB′ ∪{v2 = v1 +LV1(t)−1}, AL∪{Jv1, v2K}, PT)
if

• we have |= 〈a〉 ⇒ (LV1(t)> 0),
• KB′ = KB∪{v1 mod c = 0}, where c = 8 for 32-bit platforms and c = 16 for 64-bit platforms,
• v1,v2 ∈ Vsym are fresh

LLVM does not explicitly distinguish between the heap and stack, but applies the same
memory model for both (using load and store). The only difference is that memory ac-
quired by alloca is automatically released at the end of the function in which it was allo-
cated, while memory acquired by malloc has to be released explicitly by calling free. The
instruction “call void @free(i8* t)” releases the allocated memory block starting at
the address t. Moreover, it deletes those entries from PT which are known to correspond to
this memory block. Calling free on NULL does not change the state. If free is called with
an address that is neither the beginning of an allocated memory block in the global allocation
list (of memory allocated by malloc) nor NULL, then memory safety is violated and we reach
the ERR state.
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free (p : “call void @free(i8* t)” with t ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL]{Jv1, v2K}, PT)

((p+, LV1, AL1) ·CS, KB, AL, PT ′)
if

• v1,v2 ∈ Vsym,
• |= 〈a〉 ⇒ (LV1(t) = v1),
• PT ′ results from PT by removing all v ↪→ty w

where |= 〈a〉 ⇒ v1 ≤ v∧ v≤ v2

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1, AL1) ·CS, KB, AL, PT)
if |= 〈a〉 ⇒ (LV1(t) = 0)

((p, LV1, AL1) ·CS, KB, AL, PT)

ERR
if • 6|= 〈a〉 ⇒ (LV1(t) = 0),
• there is no Jv1, v2K ∈ AL with |= 〈a〉 ⇒ (LV1(t) = v1)

int main (int i)
if (i < 1) i = 1;
char* str = (char*) malloc(i * sizeof(char));
str[i-1] = ’\0’;
int len = strlen(str);
free(str);
return len;

define i32 @main(i32 i) {

main: 0: ineg = icmp slt i32 i, 1
1: bytes = select i1 ineg, i32 1, i32 i
2: ad = call i8* @malloc(i32 bytes)
3: pos = add i32 bytes, -1
4: last = getelementptr i8* ad, i32 pos
5: store i8 0, i8* last
6: len = call i32 @strlen(i8* ad)
7: call void @free(i8* ad)
8: ret i32 len}

To illustrate the rules for
allocating and releasing mem-
ory, assume that we call the
function strlen within a
main function with a pointer
to a memory area allocated
by malloc. The symbolic ex-
ecution graph for the corre-
sponding LLVM program is
depicted in Fig. 2. The first in-
struction is icmp slt, which
checks if the function argu-
ment i in signed interpretation
is less than 1 (slt). Since in
state A′, we do not have any in-
formation on i, we refine A′ to the states B′ and C′. C′ is then evaluated to D′, where the
result of the comparison is assigned to inegative. Depending on the value of inegative,
the select instruction assigns 1 or i to the variable bytes. In state F ′, the call of malloc
has been evaluated: the entry Jvad, vadend K is added to the global allocation list and in the
knowledge base we keep the relationship between the start address vad and the end address
vadend . In state M′, the allocated memory area is released again, leading to an empty global
allocation list and an empty list PT at the end of the program. The transition from I′ to J′

corresponds to a call of the function strlen and the transition from K′ to L′ corresponds to
a return from this function.

The symbolic execution rules for the select instruction are analogous to the rules for
icmp. The instructions call and ret for calling and returning from a function are needed
when going beyond intraprocedural analysis. The rule for call pushes a new frame on the
call stack whose position is the entry point of the called function and the argument values are
assigned to its parameters. When the ret instruction is encountered, the top frame is popped
from the stack again. For reasons of space, we only present the rules for non-void functions.
call (p : “x = call ty @function(ty1 t1, ..., tyn tn)” with x ∈ VP , t1, . . . , tn ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

(((function.entry,0), LV0, {}) · (p, LV1, AL1) ·CS, KB′, AL, PT)
if

• function is declared as function(ty1 u1, . . . ,tyn un),
• w1, . . . ,wn ∈ Vsym are fresh,
• LV0(u1) = w1, . . . ,LV0(un) = wn, and LV0(x) is undefined for all x ∈ VP \{u1, . . . ,un}
• KB′ = KB∪{w1 = LV1(t1), . . . ,wn = LV1(tn)},
• function.entry is the entry block of function
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[((main,0), {i1 = vi, . . .},{})], {. . .}, {}, {}A′

[((main,0), {i1 = vi, . . .},{})], {vi < 1, . . .}, {}, {}B′ [((main,0), {i1 = vi, . . .},{})], {vi ≥ 1, . . .}, {}, {}C′

. . .
[((main,1), {i1 = vi,ineg1 = vineg, . . .},{})],{vi ≥ 1,vineg = 0 . . .}, {}, {}D′

[((main,2), {bytes1 = vbytes, . . .},{})],{vi ≥ 1,vbytes = vi, . . .}, {}, {}E ′

[((main,3), {bytes1 = vbytes,ad1 = vad, . . .},{})],{vadend = vad+ vbytes−1,vbytes = vi, . . .}, {Jvad, vadend K}, {}F ′

[((main,4), {pos1 = vpos, . . .},{})],{vadend = vad+ vi−1,vpos = vi−1, . . .}, {Jvad, vadend K}, {}G′

[((main,5), {last1 = vlast, . . .},{})],{vadend = vad+vi−1,vlast = vadend , . . .}, {Jvad, vadend K}, {}H ′

[((main,6), {last1 = vlast, . . .},{})],{vadend = vad+ vi−1,vlast = vadend , . . .}, {Jvad, vadend K}, {vadend ↪→ 0}I′

[((entry,0), {str1 = ustr, . . .},{}),((main,6), {. . .},{})],{vadend = vad+vi−1, . . .}, {Jvad, vadend K}, {vadend ↪→ 0}
J′

. . .

[((done,4), {size1 = vsize, . . .},{}),((main,6), {. . .},{})],{. . .}, {Jvad, vadend K}, {vadend ↪→ 0}K′

[((main,7), {len1 = vsize,ad1 = vad, . . .},{})],{. . .}, {Jvad, vadend K}, {vadend ↪→ 0}L′

[((main,8), {len1 = vsize, . . .},{})],{. . .}, {}, {}M′

Fig. 2 Symbolic execution graph for main

ret (p0 : “ret ty t”; p1 : “x = call ty ...” with x ∈ VP , t ∈ VP ∪Z)

((p0, LV0, AL0) · (p1, LV1, AL1) ·CS, KB, AL, PT)

((p+1, LV1[x := w], AL1) ·CS, KB∪{w = LV0(t)}, AL, PT ′)
if

• w∈Vsym is fresh,
• PT ′ results from PT by removing all v ↪→ty w where there exists some Jv1, v2K ∈ AL0

with |= 〈a〉 ⇒ v1 ≤ v∧ v≤ v2

2.3 Generalizing Abstract States

In the strlen example and its graph in Fig. 1, after reaching K, one unfolds the loop once
more until one reaches a state K̃ at position (loop,4) again, analogous to the first iteration.
To obtain finite symbolic execution graphs, we generalize our states whenever an evaluation
visits a program position (b, i) twice and the domains of the local variable mappings LV i
in the two states are the same. Thus, we have to find a state that is more general than
K = ([(p,LVK

1 ,{})],KBK ,AL,PTK) and K̃ = ([(p,LV K̃
1 ,{})],KBK̃ ,AL,PT K̃). For readability,

we again write “↪→” instead of “↪→i8”. Then p = (loop,4), AL = {Justr, vendK}, and

LVK
1 = {str1 = ustr,c1 = v5,s1 = v4,olds1 = v3, . . .}

LV K̃
1 = {str1 = ustr,c1 = ṽ5,s1 = ṽ4,olds1 = ṽ3, . . .}

PTK = {ustr ↪→ v1,v4 ↪→ v5,vend ↪→ z}
PT K̃ = {ustr ↪→ v1,v4 ↪→ v5, ṽ4 ↪→ ṽ5,vend ↪→ z}
KBK = {v5 6= 0,v4 = v3 +1,v3 = ustr,v1 6= 0,z = 0, . . .}
KBK̃ = {ṽ5 6= 0, ṽ4 = ṽ3 +1, ṽ3 = v4,v4 = v3 +1,v3 = ustr,v1 6= 0,z = 0, . . .}.

Our aim is to construct a new state L that is more general than K and K̃, but contains
enough information for the remaining proof. We now present our heuristic for merging states
that is used in our implementation.
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To merge K and K̃, we keep those constraints of K that also hold in K̃. To this end, we
proceed in two steps. First, we create a new state L = ([(p,LVL

1 ,{})],KBL,ALL,PTL) using
fresh symbolic variables vx for all x ∈ VP where LVK

1 and LV K̃
1 are defined. This yields

LVL
1 = {str1 = vstr,c1 = vc,s1 = vs,olds1 = volds, . . .}.

We then create mappings µK (resp. µK̃) from the symbolic variables in L to their coun-
terparts in K (resp. K̃), i.e., µK(vx) = LVK

1 (x) whenever LVK
1 (x) is defined. In our example,

we obtain µK(vstr)=ustr, µK(vc)= v5, µK(vs)= v4, µK(volds)= v3, and µK̃(vstr)=ustr,
µK̃(vc)= ṽ5, µK̃(vs)= ṽ4, µK̃(volds)= ṽ3. By injectivity of LVK

1 , we can also define a pseudo-
inverse of µK that maps K’s variables to L by setting µ

−1
K (LVK

1 (x)) = vx whenever LVK
1 (x) is

defined and µ
−1
K (v)=v for all other v∈Vsym (µ−1

K̃
works analogously). So symbolic variables

in K and K̃ corresponding to the same program variable are mapped to the same symbolic
variable by µ

−1
K and µ

−1
K̃

.

In a second step, we use the mappings µ
−1
K and µ

−1
K̃

to check which constraints of K also

hold in K̃. So we set ALL = µ
−1
K (AL)∩µ

−1
K̃

(AL) = {Jvstr, vendK} and

PTL = µ
−1
K (PTK)∩µ

−1
K̃

(PT K̃)

= {vstr ↪→ v1,vs ↪→ vc,vend ↪→ z}∩{vstr ↪→ v1,v4 ↪→ v5,vs ↪→ vc,vend ↪→ z}
= {vstr ↪→ v1,vs ↪→ vc,vend ↪→ z}.

Here, v1 is not changed by the mappings µ
−1
K and µ

−1
K̃

because it is not assigned to a program
variable.

It remains to construct KBL. We have v3 = ustr (“olds = str”) in 〈K〉, but ṽ3 = v4,
v4=v3 +1, v3=ustr (“olds=str+1”) in 〈K̃〉. To keep as much information as possible in
such cases, we rewrite equations to inequations before performing the generalization. For this,
let ⟪K⟫ result from extending 〈K〉 by t1 ≥ t2 and t1 ≤ t2 for any equation t1 = t2 ∈ 〈K〉. So in
our example, we obtain v3 ≥ ustr ∈ ⟪K⟫ (“olds≥ str”). Moreover, for any t1 6= t2 ∈ 〈K〉,
we check whether 〈K〉 implies t1 > t2 or t1 < t2, and add the respective inequation to ⟪K⟫.
In this way, one can express sequences of inequations t1 6= t2, t1+1 6= t2, . . . , t1+n 6= t2
(where t1≤ t2) by a single inequation t1+n< t2, which is needed for suitable generalizations
afterwards. We use this to derive v4 < vend ∈ ⟪K⟫ (“s< vend”) from v4 = v3 +1, v3 = ustr,
ustr ≤ vend, ustr 6= vend, v4 6= vend ∈ 〈K〉.

We then let KBL consist of all formulas ϕ from ⟪K⟫ that are also implied by 〈K̃〉, again
translating variable names using µ

−1
K and µ

−1
K̃

. Thus, we have

⟪K⟫ = {v5 6= 0,v4 = v3 +1,v3 = ustr,v3 ≥ ustr,v4 < vend, . . .}
µ
−1
K (⟪K⟫) = {vc 6= 0,vs = volds+1,volds = vstr,volds ≥ vstr,vs < vend, . . .}
µ
−1
K̃

(〈K̃〉) = {vc 6= 0,vs = volds+1,volds = v4,v4 = v3 +1,v3 = vstr,vs < vend, . . .}

KBL = {vc 6= 0,vs = volds+1,volds ≥ vstr,vs < vend, . . .}.
In Fig. 1, we do not show the second loop unfolding from K to K̃, and directly draw a

generalization edge with a dashed arrow from K to L. Such an edge expresses that all concrete
states represented by K are also represented by the more general state L. Semantically, a state
a′ is a generalization of a state a iff |= 〈a〉SL⇒ µ(〈a′〉SL) for some instantiation µ .

In the strlen example, we continue symbolic execution in state L. Similar to the exe-
cution from F to K, after 5 steps another state N at position (loop,4) is reached. In Fig. 1,
the dotted arrows from L to M and from M to N abbreviate several evaluation steps. As L
is again a generalization of N using an instantiation µ with µ(vc) = wc, µ(vs) = ws, and
µ(volds) = wolds, we draw a generalization edge from N to L. The construction of a sym-
bolic execution graph is finished as soon as all its leaves have only one stack frame, which
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. . .

s1 u1

. . . 0

s2 u2

u1−s1≥ u2−s2

I′′

. . .

s1, dst u1

. . . 0

s2, src u2

u1−s1≥ u2−s2

A′′

. . .

s1 dst u1

. . . 0

s2 src u2

u1−s1≥ u2−s2

B′′

. . .

s1 dst u1

. . . 0

s2 src u2

u1−s1≥ u2−s2

dst−s1= src−s2

C′′

Fig. 3 The strcpy function and a graphical illustration of its symbolic execution

is at a ret instruction. In general, we call a non-empty symbolic execution graph with this
property complete. In particular, a complete symbolic execution graph cannot contain an
ERR state.

The approach presented so far is sufficient to prove memory safety (and together with
the techniques in Sect. 3 also termination) of the strlen function, cf. Sect. 2.4 and 3. Up to
now, when merging states we make relations between symbolic variables explicit (by adding
inequations between symbolic variables). Then, these inequations are retained in the merged
state if they are present in both states to be merged. In other words, these inequations restrict
the state space of the represented concrete states and we want to keep as many restrictions as
possible during merging in order to obtain a more precise abstraction. In some cases, however,
it is also important to make relations between differences of symbolic variables explicit (e.g.,
about the distance between addresses). So in addition to inequations like v≥ v′ or v > v′ in
⟪K⟫, we may also add equations like v− v′ = w−w′ for symbolic variables v,v′,w,w′. By
making these equations explicit, they can also be retained when merging states.

So far, relations established and preserved by instructions within a “loop” (i.e., a path
through the program leading from some program position back to the same position) are
usually retained by our merging heuristic. For example, the instruction s = getelementptr

i8* olds, i32 1 within the block loop leads to the relation v4 = v3 +1 in K and to the
relation ṽ4 = ṽ3+1 in K̃, where v4 and ṽ4 correspond to the program variable s and v3 and ṽ3
corresponds to the program variable olds. Thus, the relation vs = volds+1 is also contained
in the merged state L for the corresponding “merged” symbolic variables vs and volds.

However, relations established before a loop may be generalized or removed during merg-
ing. As example, the instruction olds = phi i8* [str,entry], [s,loop] assigns the
value of str to the variable olds the first time the block loop is entered. So in the state K,
we had the relation v3 = ustr where the symbolic variables v3 and ustr correspond to the
program variables olds and str. Since in K̃, the value of olds has been increased by 1, this
is generalized to the inequation volds ≥ vstr in the merged state L. So by merging states, we
lose the information on the exact distance between olds and its initial value str.

char* strcpy(char* s1, char* s2) {
char* dst = s1;
char* src = s2;
while ((*dst++ = *src++) != ’\0’);
return s1; }

Of course, we need to abstract to obtain
a finite representation of all program evalua-
tions. However, we might want to keep the
knowledge that two distances between differ-
ent symbolic variables are the same. A pro-
gram where this knowledge is necessary for a successful analysis with our approach is the
strcpy function on the right (cf. [42,49]). This function is used to copy the string at the
source address s2 to the destination address s1. The while loop of the function terminates
as soon as the value 0 is reached in the source string.
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To ease readability, we do not depict the full symbolic execution graph. Instead, Fig. 3
shows a graphical illustration of some key program states in the execution of strcpy. The
initial state I′′ describes states in which the destination s1 begins an allocated memory block
whose length is at least as long as the source string s2. Moreover, the symbolic variables
u1 and u2 refer to the last address in each allocated memory block. State A′′ corresponds
to the first entry into the loop, in which the program variables dst and src point to the
same addresses as s1 and s2, respectively. After one loop iteration, both src and dst have
been incremented by one, as shown in B′′. For the states A′′ and B′′, the merging approach
presented so far would generate a state requiring only s1 ≤ dst ≤ u1 and s2 ≤ src ≤ u2,
but it would not keep any information about the exact distances of dst from s1 and of src
from s2. However, this is not sufficient to prove memory safety (and hence termination)
of the strcpy function, as this generalized state would also represent cases in which the
destination memory area starting at dst is shorter than the source area. To handle such
examples successfully, our merging heuristic needs to relate the difference between dst and
s1 with the difference between src and s2, obtaining a state such as C′′.

Thus, when merging two states a and b, we now also check whether there are symbolic
variables va

1,v
a
2,v

a
3,v

a
4 with (va

1,v
a
2) 6= (va

3,v
a
4) occurring in state a such that va

1− va
2 = c1 ·

(va
3− va

4) for some constant c1. To simplify the search for such relations, we only consider
cases where va

3−va
4 = c2 for some constant c2, and to avoid several equivalent equations due

to symmetries, we require that c1 and c2 are positive. Then, if the corresponding relation
vb

1 − vb
2 = c1 · (vb

3 − vb
4) also holds for the symbolic variables vb

1,v
b
2,v

b
3,v

b
4 in state b that

are “merged with” va
1,v

a
2,v

a
3,v

a
4, then the relation v1 − v2 = c1 · (v3 − v4) is added to the

knowledge base of the merged state for the “merged” symbolic variables vi. So for strcpy,
since dst−s1= src−s2 holds in both states A′′ and B′′, this equation is contained in the
knowledge base of the state C′′ that results from merging A′′ and B′′. When merging states in
this way, termination of strcpy can be proved automatically in a similar way as for strlen.
Def. 7 formalizes our technique for merging states.

Definition 7 (Merging States) Let a = ([(p1,LVa
1,ALa

1), ...,(pn,LVa
n,ALa

n)],KBa,ALa,PTa),
b = ([(p1,LVb

1,ALb
1), . . . ,(pn,LVb

n,ALb
n)],KBb,ALb,PTb) be abstract states. Moreover, for all

i ∈ {1, . . . ,n}, let the domains of LVa
i and LVb

i coincide. Then c = (CSc,KBc,ALc,PTc) with
CSc = [(p1,LVc

1,ALc
1), . . . ,(pn,LVc

n,ALc
n)] results from merging the states a and b if

• LVc
i = {xi = vi

x | x ∈ VP where LVa
i (x) is defined } for all 1≤ i≤ n and fresh pairwise

different symbolic variables vi
x. Moreover, we define µa(vi

x) = LVa
i (x) and µb(vi

x) =
LVb

i (x) for all x ∈ VP where LVa
i (x) is defined, and we let µa and µb be the identity on

all remaining variables from Vsym.

• PTc = µ−1
a (PTa)∩µ

−1
b (PTb), ALc = µ−1

a (ALa)∩µ
−1
b (ALb), and ALc

i = µ−1
a (ALa

i )∩
µ
−1
b (ALb

i ) for all 1 ≤ i ≤ n. Here, the “inverse” of µa is defined as µ−1
a (v) = vi

x if v =
LVa

i (x) and µ−1
a (v) = v for all other v ∈ Vsym (µ−1

b is defined analogously).

• KBc = { ϕ ∈ µ−1
a (⟪a⟫) | |= µ

−1
b (〈b〉)⇒ ϕ }, where ⟪a⟫ is the smallest set such that

– 〈a〉 ⊆ ⟪a⟫
– t1 = t2 ∈ ⟪a⟫ =⇒ t1 ≥ t2, t1 ≤ t2 ∈ ⟪a⟫
– (t1 6= t2 ∈ ⟪a⟫∧ |= 〈a〉 ⇒ t1 > t2) =⇒ t1 > t2 ∈ ⟪a⟫
– (t1 6= t2 ∈ ⟪a⟫∧ |= 〈a〉 ⇒ t1 < t2) =⇒ t1 < t2 ∈ ⟪a⟫
– |= 〈a〉 ⇒ v1− v2 = c1 · c2∧ v3− v4 = c2 =⇒ v1− v2 = c1 · (v3− v4) ∈ ⟪a⟫

for all c1,c2 ∈ N>0 and all v1,v2,v3,v4 ∈ Vsym(a) with (v1,v2) 6= (v3,v4).
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We now define a rule for generalizations in order to compute generalization edges auto-
matically. Recall that semantically, a state a′ is a generalization of a state a iff |= 〈a〉SL ⇒
µ(〈a′〉SL) for some instantiation µ . To automate our procedure, we define a weaker re-
lationship between a and a′. We say that a′ = (CS′,KB′,AL′,PT ′) is a generalization of
a = (CS,KB,AL,PT) with the instantiation µ whenever the conditions (b) – (f) of the follow-
ing rule are satisfied. Again, let a denote the state before the generalization step (i.e., above
the horizontal line of the rule) and let a′ be the state resulting from the generalization (i.e.,
below the line).

generalization with µ

([(p1, LV1, AL1), . . . ,(pn, LVn, ALn)], KB, AL, PT)

([(p1, LV ′1, AL′1), . . . ,(pn, LV ′n, AL′n)], KB′, AL′, PT ′)
if

(a) a has an incoming evaluation edge,9

(b) LV i and LV ′i have the same domain and LV i(x) = µ(LV ′i(x)) for all 1≤ i≤ n and all x ∈ VP where
LV i and LV ′i are defined,

(c) |= 〈a〉 ⇒ µ(KB′),
(d) if Jv1, v2K ∈ AL′, then Jµ(v1), µ(v2)K ∈ AL,
(e) if Jv1, v2K ∈ AL′i, then Jµ(v1), µ(v2)K ∈ ALi (for all 1≤ i≤ n),
(f) if (v1 ↪→ty v2) ∈ PT ′, then (µ(v1) ↪→ty µ(v2)) ∈ PT

Clearly, then we indeed have |= 〈a〉SL ⇒ µ(〈a′〉SL). Condition (a) is needed to avoid
cycles of refinement and generalization steps in the symbolic execution graph, which would
not correspond to any computation.

Of course, many approaches are possible to compute such generalizations (or “widen-
ings”). Thm. 8 shows that the merging heuristic from Def. 7 satisfies the conditions of the
generalization rule. So if a state c results from merging the states a and b, then c is indeed
a generalization of both a and b. Thm. 8 also shows that if one uses the merging heuris-
tic to compute generalizations, then the construction of symbolic execution graphs always
terminates when applying the following strategy:

• If b is the next state to evaluate symbolically and there is a path from some state a to
b, where a and b are at the same program position, the domains of all functions LV in
a are equal to the domains of the corresponding functions LV in b, b has an incoming
evaluation edge, and a has no incoming refinement edge, then:
• If a is a generalization of b (i.e., the corresponding conditions of the generalization

rule are satisfied), we draw a generalization edge from b to a.

• Otherwise, remove a’s children, and add a generalization edge from a to the merging
c of a and b. If a already had an incoming generalization edge from some state q,
then remove a and add a generalization edge from q to c instead.

• Otherwise, just evaluate b symbolically as usual, applying refinements when needed.

Theorem 8 (Soundness and Termination of Merging) Let c result from merging the states
a and b as in Def. 7. Then c is a generalization of a and b with the instantiations µa and µb,
respectively. Moreover, if a is not already a generalization of b, and n is the height of the call
stacks in a, b, and c, then |⟪c⟫|+(∑1≤i≤n |ALc

i |)+ |ALc|+ |PTc|< |⟪a⟫|+(∑1≤i≤n |ALa
i |)+

|ALa|+ |PTa|. Here, for any conjunction ϕ , let |ϕ| denote the number of its conjuncts. Thus,
the above strategy to construct symbolic execution graphs always terminates.

Proof To show that c is a generalization of a and b with the instantiations µa and µb, re-
spectively, we have to prove that the conditions (b) – (f) of the generalization rule above are

9 Evaluation edges are edges that are not refinement or generalization edges.
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satisfied. By definition, we have LVa
i (x) = µa(vi

x) = µa(LVc
i (x)) and LVb

i (x) = µb(LVc
i (x))

for all 1 ≤ i ≤ n and all x ∈ VP , which proves (b). Moreover, for Jv1, v2K ∈ ALc, we have
Jv1, v2K ∈ µ−1

a (ALa) and Jv1, v2K ∈ µ
−1
b (ALb). This implies Jµa(v1), µa(v2)K ∈ ALa and

Jµb(v1), µb(v2)K ∈ ALb, which proves (d). Condition (e) on ALc
i and condition (f) on PTc

can be proved in a similar way.
It remains to prove (c). As KBc ⊆ µ−1

a (⟪a⟫), we have |= ⟪a⟫⇒ µa(KBc) and therefore
also |= 〈a〉⇒ µa(KBc). Moreover, as |= µ

−1
b (〈b〉)⇒ ϕ holds for all ϕ ∈ KBc, we also obtain

|= 〈b〉 ⇒ µb(KBc). Note that we even have |= 〈a〉 ⇒ µa(〈c〉) and |= 〈b〉 ⇒ µb(〈c〉).
Finally, we show that |⟪c⟫|+(∑1≤i≤n |ALc

i |)+ |ALc|+ |PTc|< |⟪a⟫|+(∑1≤i≤n |ALa
i |)+

|ALa|+ |PTa| if a is not a generalization of b.
We first show that ⟪c⟫ = 〈c〉. The reason is that whenever there is a t1 = t2 ∈ 〈c〉, then

we have t1 = t2 ∈ µ−1
a (⟪a⟫) and thus also t1 ≥ t2, t1 ≤ t2 ∈ µ−1

a (⟪a⟫). As |= µ
−1
b (〈b〉)⇒

t1 = t2 also implies |= µ
−1
b (〈b〉)⇒ t1 ≥ t2 and |= µ

−1
b (〈b〉)⇒ t1 ≤ t2, we also have t1 ≥

t2, t1 ≤ t2 ∈ 〈c〉. Moreover, suppose that t1 6= t2 ∈ 〈c〉 and |= 〈c〉 ⇒ t1 > t2. This implies
|= µ−1

a (〈a〉)⇒ t1 > t2 (i.e., t1 > t2 ∈ µ−1
a (⟪a⟫)) and |= µ

−1
b (〈b〉)⇒ t1 > t2. Hence, we also

obtain t1 > t2 ∈ 〈c〉. The case where t1 6= t2 ∈ 〈c〉 and |= 〈c〉 ⇒ t1 < t2 is analogous. Finally,
consider the case that |= 〈c〉 ⇒ v1− v2 = c1 · c2∧ v3− v4 = c2 holds for some c1,c2 ∈ N>0
and v1,v2,v3,v4 ∈ Vsym(c) with (v1,v2) 6= (v3,v4). Since |= 〈a〉 ⇒ µa(〈c〉), we also have
µa(v1− v2 = c1 · (v3− v4)) ∈ ⟪a⟫, i.e., (v1− v2 = c1 · (v3− v4)) ∈ µ−1

a (⟪a⟫). Moreover,
because of |= 〈b〉 ⇒ µb(〈c〉) we have |= µ

−1
b (〈b〉)⇒ v1− v2 = c1 · (v3− v4). Together, this

implies v1− v2 = c1 · v3− v4 ∈ KBc ⊆ 〈c〉.
Next note that 〈c〉= KBc. Again the reason is that for any ϕ ∈ 〈c〉we have ϕ ∈ µ−1

a (⟪a⟫)
and |= µ

−1
b (〈b〉)⇒ ϕ . Thus, we only have to show that |KBc|+(∑1≤i≤n |ALc

i |)+ |ALc|+
|PTc| < |⟪a⟫|+(∑1≤i≤n |ALa

i |)+ |ALa|+ |PTa|. From the definition, it is obvious that we
always have |KBc| ≤ |⟪a⟫|, |ALc| ≤ |ALa|, |ALc

i | ≤ |ALa
i | for all 1≤ i≤ n, and |PTc| ≤ |PTa|.

Hence, it suffices to show that if |KBc| = |⟪a⟫|, |ALc| = |ALa|, |ALc
i | = |ALa

i | for all
1 ≤ i ≤ n, and |PTc| = |PTa|, then a would be a generalization of b with the instantiation
µb ◦µ−1

a . To see this, note that we have LVb(x) = µb(vx) = µb(µ
−1
a (LVa(x))), i.e., condition

(b) of the generalization rule is satisfied. Clearly, |ALc| = |ALa| means that µ−1
a (ALa) =

µ
−1
b (ALb). Thus, if Jv1, v2K ∈ ALa, then Jµ−1

a (v1), µ−1
a (v2)K ∈ µ−1

a (ALa) = µ
−1
b (ALb) and

hence, Jµb(µ
−1
a (v1)), µb(µ

−1
a (v2))K ∈ ALb, which shows condition (d). Conditions (e) and

(f) follow from |ALc
i |= |ALa

i | resp. |PTc|= |PTa| for similar reasons. Finally, |KBc|= |⟪a⟫|
means that for all ϕ ∈ µ−1

a (⟪a⟫), we have |= µ
−1
b (〈b〉)⇒ ϕ . Let ψ ∈ µb(µ

−1
a (KBa)). Then

we have µ
−1
b (ψ) ∈ µ−1

a (KBa) ⊆ µ−1
a (⟪a⟫). Hence, we can infer |= µ

−1
b (〈b〉)⇒ µ

−1
b (ψ)

which implies |= 〈b〉 ⇒ ψ , cf. condition (c). ut

2.4 Correctness w.r.t. the Semantics of LLVM

We now prove the correctness of our approach, i.e., that our symbolic execution graphs
represent an over-approximation of all concrete program runs. We proceed in two stages,
as depicted graphically in Fig. 4. This proof structure is inspired by the correctness proof
of our termination technique for Java w.r.t. a suitable formal semantics [6]. First, we relate
the formal definition of the LLVM semantics from the Vellvm project [50] to our semantics
→LLVM of LLVM from Sect. 2 that we use for program analysis. Here,→LLVM is defined
by applying our symbolic execution rules of Sect. 2.2 to concrete states. Only for rules that
deal with memory access (via load, store, alloca, or malloc), our symbolic execution
rules have to be adapted slightly. This is necessary since the concrete rules essentially have
to implement an LLVM interpreter. For example, in a concrete state we know the size of an
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Vellvm Vellvm

Fig. 4 Relation between evaluation in LLVM and paths in the symbolic execution graph

allocated memory block in AL∗ (say, n bytes). Thus, the concrete rules put n entries for this
block into PT to track the contents of all currently allocated memory. In our abstract rules,
the size of an allocated memory block may be unknown, and thus, we do not know how many
↪→ty-entries to add to PT . Hence, we can only represent a part of the memory contents in PT .
Similarly, our symbolic execution can abstract information when a store operation partially
overwrites a multi-byte value. However, for the concrete semantics→LLVM, we need to keep
track of each allocated byte of memory. See the appendix for the four cases where our rules
for the abstract semantics need to be adapted for the concrete semantics.

Vellvm is a formalization of LLVM in the Coq [5] theorem prover. In this subsection,
we only regard programs over the fragment supported by our rules. While Vellvm’s non-
deterministic semantics LLVMND returns undef (which we currently do not support) for a
load from uninitialized allocated memory, its deterministic semantics LLVMD returns the
value 0. Thus, we use the semantics LLVMD and represent its transition relation as→Vellvm.

For our proof, we define a relation T R A N S between Vellvm states and concrete states
in our representation. Thm. 9 will state that for every evaluation step v1 →Vellvm v2 with
T R A N S(v1,c1), there is a c2 with T R A N S(v2,c2) such that c1→LLVM c2 holds. Moreover,
if Vellvm’s execution gets stuck in a state v (i.e., if the next instruction to execute would
violate memory safety, denoted Stuck(v)) and T R A N S(v,c), then we have c→LLVM ERR. So
the idea is that we can “replay” any Vellvm execution as an execution on our concrete states.
In a second step, we relate symbolic execution on abstract states to evaluation on concrete
states. Thm. 10 states that if some concrete state c1 is represented by a state a1 in a symbolic
execution graph (denoted by “repr” in Fig. 4) and c1→LLVM c2, then the graph contains a
path from a1 to a state a2 in the symbolic execution graph such that a2 represents c2.

Together, Thm. 9 and Thm. 10 show that symbolic execution graphs simulate Vellvm
execution, and hence, they imply the soundness of our technique for analyzing memory
safety w.r.t. the Vellvm semantics of LLVM: Suppose that there is an LLVM-computation
v1→Vellvm v2→Vellvm . . .→Vellvm vn with Stuck(vn) and v1 is represented in the symbolic ex-
ecution graph (i.e., there is a state a1 in the graph with T R A N S(v1,c1) and c1 is represented
by a1). Then by Thm. 9 there is a symbolic evaluation c1 →LLVM c2 →LLVM . . .→LLVM

cn→LLVM ERR, where T R A N S(vi,ci) holds for all i. Hence, Thm. 10 implies that the sym-
bolic execution graph also contains a path from the state a1 to an ERR node.

Vellvm’s representation of (concrete) program states is similar to our Def. 3. The main
difference is that Vellvm does not use symbolic variables since its program states are not
designed for symbolic execution. This was also our main reason for developing a new repre-
sentation for program states. We now express Vellvm’s representation in our terminology.

Vellvm States. A Vellvm state has the form (M,
−→
Σ ) for a memory state M and a list of stack

frames
−→
Σ which is analogous to our call stack CS. In a stack frame Σ = (fid,b,−→c , tmn,∆ ,α),

fid is the id of the current function, b is the label of the current basic block, −→c are the
remaining instructions to be executed in the current block, with tmn as the terminator of the
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block (its last command). Together, these components correspond to our position p = (b, j)
in the program where the command sequence “−→c , tmn” begins in block b at line j. Recall
that we assume block labels to be different across different functions. Thus, we do not need
to represent fid explicitly in our states. The component ∆ keeps track of the values of the
local variables of the block and corresponds to our functions LV i. The final component α

(roughly) corresponds to our lists ALi and keeps track of the memory blocks allocated by the
current stack frame that are released automatically when the current function returns.

Vellvm does not use absolute memory addresses, but pairs of a memory-block identifier
(a number which is increased in each allocation) and an offset in that block. We say that a
block identifier is valid if the corresponding memory block has been allocated and not yet
released. In a Vellvm memory state M = (N,B,C), N denotes the number of the next fresh
memory block to allocate, B is a partial map from valid block identifiers to the size of the
blocks (like our entries Jv1, v2K ∈ AL∗ with size v2− v1 + 1), and C is a partial map from
pairs of a valid block identifier and an offset in that block to values (similar to our PT).

Values are represented in three ways in Vellvm. For integers, mb(sz,byte) represents
the memory content byte and the bit-width sz of the overall integer (but not the position
in the integer that this byte corresponds to). We represent similar information in PT . For
uninitialized memory cells, the pseudo-value muninit is used, which stands for the value 0
in the semantics LLVMD. For pointers, Vellvm uses mptr(blk,ofs, idx), where the block blk
and offset ofs characterize the target of the pointer, and the index idx indicates which of the
bytes of the pointer is represented.

Translation T R A N S. We now define a translation relation T R A N S between Vellvm states
and concrete states. The reason why T R A N S is a relation instead of a function is that in
contrast to us, Vellvm represents blocks of memory by their size and an identifier number but
without absolute addresses. So for a Vellvm state v, we want to describe all concrete states
(cf. Def. 3) c = (CS,KB,AL,PT) where T R A N S(v,c) holds.

First, consider a Vellvm memory state M = (N,B,C). To assign start and end addresses
for its memory blocks, we relate M to any memory allocation AL∗ of blocks of the same
sizes. Thus, we require AL∗ = {Jvblk, wblkK | B(blk) is defined} with |= KB⇒ wblk− vblk =
B(blk)−1 where vblk and wblk are pairwise different symbolic variables for all numbers blk
where B(blk) is defined.

To handle actual memory contents, we consider the values of C(blk,ofs) and introduce
fresh symbolic variables such that PT = {x(blk,ofs) ↪→i8 y(blk,ofs) |C(blk,ofs) is defined}. The
value for the address x(blk,ofs) is obtained by adding ofs to the corresponding symbolic vari-
able vblk for the start of the block blk. So we require |= KB⇒ x(blk,ofs) = vblk +ofs whenever
C(blk,ofs) is defined. Moreover, KB must contain knowledge about the values stored in
memory. If C(blk,ofs) = muninit, then y(blk,ofs) = 0 according to the deterministic seman-
tics LLVMD. If C(blk,ofs) = mb(sz,byte), we require |= KB⇒ y(blk,ofs) = byte. Here, we
assume that byte is already represented as a signed integer from [−27,27−1]. Similarly, if
C(blk,ofs) = mptr(blk′,ofs′, idx), then KB must contain the knowledge that y(blk,ofs) is the
idx’s byte of the value forming the address vblk′ +ofs′ (this byte is obtained as in Def. 4).

Finally, we relate Vellvm’s call stack
−→
Σ =[fr1, . . . , frn] with fri = (fidi,bi,

−→ci , tmni,∆i,αi)
to a call stack CS = [(p1,LV1,AL1), . . . ,(pn,LVn,ALn)] for our concrete state. For each 1≤
i ≤ n, we set pi = (bi, ji), where ji is the position in the block bi where the command
sequence “−→ci , tmni” begins. Moreover, for any 1≤ i≤ n, LV i(x) is defined iff ∆i(x) is defined.
In this case, LV i(x) is a fresh symbolic variable with |= KB⇒ LV i(x) = ∆i(x). To determine
AL1, . . ., ALn, and AL, we define ALi = {Jvblk, wblkK | blk ∈ αi} for 1 ≤ i ≤ n and AL =
AL∗ \

⋃
1≤i≤n ALi.
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Evaluation Rules. We now show that our evaluation→LLVM simulates→Vellvm. For reasons
of space, we only demonstrate this for one Vellvm evaluation rule from [50], adapted to our
notation. In the following rule for br, eval(∆ , t) evaluates t according to ∆ . Vellvm uses an
operation findblock to obtain the block b1 with the instructions

−−→
phi1
−−−→
cmd1tmn1. Here,

−−→
phi1

are the phi instructions of the block b1. This operation is implicit in our rules. Similar to
our br rules, computephi(∆ ,b,b1,

−−→
phi1) yields a new mapping ∆ ′ for the local variables

according to the phi instructions
−−→
phi1 in the target block b1.

br true (tmn : “br i1 t, label b1, label b2” with t ∈ VP ∪{0,1} and b1,b2 ∈ Blks)

M, (fid,b, [ ], tmn,∆ ,α) ·−→Σ

M, (fid,b1,
−−−→
cmd1, tmn1,computephi(∆ ,b,b1,

−−→
phi1),α) ·−→Σ

if

• eval(∆ , t) = 1,
• findblock yields b1 with the instructions

−−→
phi1
−−−→
cmd1tmn1

Thm. 9 shows that our evaluation rules on concrete states correspond to evaluation
according to Vellvm. As mentioned, here we only consider the fragment of LLVM handled
by our rules and in addition, we assume that a load operation for a type in with n mod 8 6= 0
is only performed for values that were originally written by a store of type in. Similarly,
we assume that values written by a store operation for a type in with n mod 8 6= 0 will only
be read by load operations of the same type. The reason is that for simplicity, our concrete
states do not keep track of the type with which a store operation was performed. Therefore,
we cannot distinguish whether a later load of, e.g., an i20 value should yield the contents
of the memory cell or an unknown value. Our abstract domain always over-estimates such
incompatible reads by an unknown value.

Theorem 9 (Simulating Vellvm by Evaluation of Concrete States) Let P be an LLVM
program. For all Vellvm states, v →Vellvm v implies that for any concrete state c with
T R A N S(v,c) there exists a concrete state c with T R A N S(v,c) such that c→LLVM c. More-
over, if Stuck(v) holds, then T R A N S(v,c) implies c→LLVM ERR.

Proof We show the simulation of Vellvm’s rule br true by our corresponding rule. The
other cases are analogous.

Let v = (M,(fid,b, [ ], tmn,∆ ,α) ·−→Σ ) and v = (M,(fid,b1,
−−−→
cmd1, tmn1,∆

′,α) ·−→Σ ) such
that v→Vellvm v holds by the rule br true. Assume that we have T R A N S(v,c) for c =
(((b, j),LV1,AL1) ·CS,KB,AL,PT). As br true is applicable to v, we know eval(∆ , t) = 1
and hence t = 1 or t ∈ VP with ∆(t) = 1, implying |= 〈c〉 ⇒ LV1(t) = 1. Thus, we can ap-
ply our rule for “br i1 t, label b1, label b2” to c and obtain c→LLVM c for a state c =
(((b1, j1),LV ′1,AL1)·CS, KB∪KBphi, AL, PT) with (LV ′1,KBphi)= computePhi(LV1,b,b1)
and j1 = firstNonPhi(b1).

It remains to prove that T R A N S(v,c) holds. Note that (b1, j1) with j1 = firstNonPhi(b1)

corresponds exactly to the position where “
−−−→
cmd1, tmn1” begins in b1. Moreover, the compo-

nents of AL∗, PT , and M do not change in the steps c→LLVM c and v→Vellvm v. The compu-
tations for the phi instructions are analogous in both settings, i.e., from |= 〈c〉 ⇒ LV1(x) =

∆(x) we get |= 〈c〉⇒ LV ′1(x) = ∆ ′(x) for all x, where ∆ ′ = computephi(∆ ,b,b1,
−−→
phi1). ut

We now show that evaluation of concrete states with→LLVM can be simulated by sym-
bolic execution of abstract states. Together with Thm. 9, this proves that our symbolic execu-
tion correctly simulates LLVM according to the semantics of Vellvm, cf. Fig. 4.
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Theorem 10 (Simulating Evaluation of Concrete States by Abstract States) Let P be
an LLVM program with a complete symbolic execution graph G. Let c be a concrete state
that is represented by some abstract state a in G. Then c→LLVM c implies that there is a path
from a to an abstract state a in G such that c is represented by a.

Proof Let c→LLVM c, where c is represented by an abstract state a in the symbolic execution
graph G, i.e., (sc,mc) |= σ(〈a〉SL) for some concrete instantiation σ . We immediately obtain
that c is also represented by a state in G:

(a) If a’s outgoing edge is an evaluation edge, then for a’s successor a, we have (sc,mc) |=
σ(〈a〉SL) for a concrete instantiation σ with σ(v) = σ(v) for all v ∈ Vsym(a). This is
trivial for all rules except those for the instructions load, store, alloca, and malloc,
since the same rules are applied to the concrete and abstract states (note that the evalua-
tion rules are non-overlapping). The proof for the slightly adapted concrete rules for the
four instructions above can be found in the appendix.

(b) If a’s outgoing edges are refinement edges, then one of its successors ã has an evaluation
edge to another abstract state a, where (sc,mc) |= σ(〈a〉SL) for a concrete instantiation
σ with σ(v) = σ(v) for all v ∈ Vsym(a).

(c) If a’s outgoing edge is a generalization edge to a state ã with some instantiation µ , and ã
has an evaluation edge to another abstract state a, then (sc,mc) |= σ(〈a〉SL) for a concrete
instantiation σ with σ(v) = σ(µ(v)) for all v ∈ Vsym(ã).

(d) Otherwise, a’s outgoing edge is a generalization edge to a state ã with some instantiation
µ , ã has a refinement edge to a successor â, and there is an evaluation edge from â to
another abstract state a, where (sc,mc) |= σ(〈a〉SL) for a concrete instantiation σ with
σ(v) = σ(µ(v)) for all v ∈ Vsym(ã). ut

Recall that a complete symbolic execution graph may not contain the state ERR, and
thus, all states represented by the graph are memory safe.

Corollary 11 (Memory Safety of LLVM Programs) Let P be an LLVM program with a
complete symbolic execution graph G. Then P is memory safe for all states represented by
the states in G.

Proof If a concrete state c is represented by an abstract state a in the graph G where
T R A N S(v,c) and Stuck(v) for some Vellvm state v, then by Thm. 9 we have c→LLVM ERR.
By Thm. 10, c→LLVM ERR implies that there is an edge from a to ERR in G. However, this
contradicts that G is complete and therefore does not contain ERR. ut

3 From Symbolic Execution Graphs to Integer Transition Systems

To prove termination of the input program, we extract an integer transition system (ITS)
from the symbolic execution graph and then use existing tools to prove its termination. The
extraction step essentially restricts the information in abstract states to the integer constraints
on symbolic variables. This conversion of memory-based arguments into integer arguments
often suffices for the termination proof. The reason for considering only Vsym instead of VP is
that since the mappings LV i are injective, the local variables VP are completely represented
by symbolic variables and the conditions in the abstract states (which are crucial for proving
termination) only concern the symbolic variables.

For example, termination of strlen is proved by showing that the pointer s is increased
as long as it is smaller than vend, the symbolic end of the input string. In Fig. 1, this is explicit
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since vs < vend is an invariant that holds in all states represented by L. Each iteration of the
loop increases the value of vs.

Formally, ITSs are graphs whose nodes are abstract states and whose edges are transitions.
Let V ⊆ Vsym be the finite set of all symbolic variables occurring in states of the symbolic
execution graph. A transition is a tuple (a,CON,a) where a,a are abstract states and the
condition CON ⊆ QF IA(V ]V ′) is a set of pure quantifier-free formulas over the variables
V ]V ′. Here, V ′ = {v′ | v ∈ V} represents the values of the variables after the transition. An
ITS state (a,σ) consists of an abstract state a and a concrete instantiation σ : V → Z. For
any such σ , let σ ′ : V ′→ Z with σ ′(v′) = σ(v). Given an ITS I, (a,σ) evaluates to (a,σ)
(denoted “(a,σ)→I (a,σ)”) iff I has a transition (a,CON,a) with |= (σ ∪σ

′)(CON). Here,
we have (σ ∪σ

′)(v) = σ(v) and (σ ∪σ
′)(v′) = σ

′(v′) = σ(v) for all v ∈ V . An ITS I is
terminating iff→I is well-founded.10

We convert symbolic execution graphs to ITSs by transforming every edge into a tran-
sition. If there is a generalization edge from a to a with an instantiation µ , then the new
value of any v ∈ Vsym(a) in a is µ(v). Hence, we create the transition (a, 〈a〉 ∪ {v′ =
µ(v) | v ∈ Vsym(a)}, a).11 So for the edge from N to L in Fig. 1, we obtain the condition
{ws = wolds+1,wolds = vs,vs < vend,v′str = vstr,v′end = vend,v′c = wc,v′s = ws, . . .}. This
can be simplified to {vs < vend,v′end = vend,v′s = vs+1, . . .}.

An evaluation or refinement edge from a to a does not change the variables of Vsym(a).
Thus, we construct the transition (a, 〈a〉∪{v′ = v | v ∈ Vsym(a)}, a).

So in the ITS resulting from Fig. 1, the condition of the transition from A to B is {v′end =
vend,u′str = ustr}. The condition for the transition from B to D is the same, but extended by
v′1 = v1. Hence, in the transition from A to B, the value of v1 can change arbitrarily (since
v1 /∈ Vsym(A)), but in the transition from B to D, it must remain the same.

Definition 12 (ITS from Symbolic Execution Graph) Let G be a symbolic execution
graph. Then the corresponding integer transition system IG has one transition for each
edge in G:

• If the edge from a to a is not a generalization edge, then IG has a transition from a to a
with the condition 〈a〉∪{v′ = v | v ∈ Vsym(a)}.
• If there is a generalization edge from a to a with the instantiation µ , then IG has a

transition from a to a with the condition 〈a〉∪{v′ = µ(v) | v ∈ Vsym(a)}.

From the non-generalization edges on the path from L to N in Fig. 1, we obtain transitions
whose conditions contain v′end = vend and v′s = vs. So vs is increased by 1 in the transition
from N to L and it remains the same in all other transitions of the graph’s only cycle. Since the
transition from N to L is only executed as long as vs < vend holds (where vend is not changed
by any transition), termination of the resulting ITS can easily be proved automatically.

The following theorem states the soundness of our approach for termination proofs. If
there is an infinite LLVM-computation v1→Vellvm v2→Vellvm . . . and v1 is represented in the
symbolic execution graph (i.e., there exists some c1 with T R A N S(v1,c1) that is represented
by a1), then Thm. 9 and 10 imply that there is a corresponding infinite path in the graph
starting with the node a1. We now show that then the ITS resulting from the corresponding
symbolic execution graph is not terminating.

10 For programs starting in states represented by an abstract state a0, it would suffice to prove termination
of all→I -evaluations starting in ITS states of the form (a0,σ).

11 In the transition, we do not impose the additional constraints of 〈a〉 on the post-variables V ′, since they
are checked anyway in the next transition which starts in a.
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Theorem 13 (Termination of LLVM Programs) Let P be an LLVM program with a com-
plete symbolic execution graph G. If IG is terminating, then P is also terminating for all
LLVM states represented by the states in G.

Proof Let c→LLVM c, where G contains an abstract state a with (sc,mc) |= σ(〈a〉SL) for
some concrete instantiation σ . In the proof of Thm. 10, we showed that there is an abstract
state a in G and a concrete instantiation σ with (sc,mc) |= σ(〈a〉SL). To prove Thm. 13, it
suffices to show (a,σ)→+

IG
(a,σ). By Thm. 9, then termination of IG also implies that

there is no infinite LLVM evaluation according to the semantics of Vellvm.

(a) If a’s outgoing edge is an evaluation edge to a, then σ(v) = σ(v) for all v ∈ Vsym(a). We
show that then we have (a,σ)→IG (a,σ). Note that IG has a transition (a,〈a〉∪{v′ =
v | v ∈ Vsym(a)},a), so it suffices to show that (σ ∪σ

′) satisfies the condition of this
transition. We have (sc,mc) |= σ(〈a〉SL), and hence (sc,mc) |= σ(〈a〉). Since σ is a
concrete instantiation (i.e., σ(〈a〉) does not contain any variables), this implies |= σ(〈a〉)
and thus, (σ ∪σ

′) (〈a〉). Moreover, for all v∈Vsym(a), we have (σ ∪σ
′)(v′) = σ

′(v′) =
σ(v) = σ(v) = (σ ∪σ

′)(v).
(b) If the path from a to a consists of a refinement and a subsequent evaluation edge, then

σ(v) = σ(v) for all v ∈ Vsym(a). We show that then we have (a,σ)→+
IG

(a,σ). To see
this, note that in a’s two successors, the knowledge base is extended by ϕ and ¬ϕ for
some formula ϕ , respectively. If |= σ(ϕ), then let ã be the successor with the knowledge
base K̃B = KB∪{ϕ}. Otherwise, let ã be the successor with the knowledge base K̃B =

KB∪{¬ϕ}. So in both cases, we have |= σ(K̃B) and thus, (sc,mc) |= σ(〈ã〉SL). Hence,
(ã,σ)→IG (a,σ) can be shown as in (a). As IG has a transition (a,〈a〉∪{v′ = v | v ∈
Vsym(a)}, ã), we can show (a,σ)→IG (ã,σ) as in (a).

(c) Let a have a generalization edge to some ã with the instantiation µ and an evaluation
edge from ã to a with σ(v) = σ(µ(v)) for all v ∈ Vsym(ã). We show that then we have
(a,σ)→IG (ã,σ ◦µ)→IG (a,σ).
We first prove (a,σ)→IG (ã,σ ◦µ). Due to the edge from a to ã, IG has the transition
(a,〈a〉∪{v′= µ(v) | v∈Vsym(ã)}, ã), and we have to show that (σ∪(σ ◦µ)′) satisfies the
condition of this transition. We have (sc,mc) |= σ(〈a〉SL), and hence (sc,mc) |= σ(〈a〉),
from which |= σ(〈a〉) follows and finally |= (σ ∪ (σ ◦µ)′) (〈a〉). Moreover, for all v ∈
Vsym(ã), we have (σ ∪(σ ◦µ)′)(v′) = (σ ◦µ)′(v′) = σ(µ(v)) = (σ ∪(σ ◦µ)′)(µ(v)).
Now we have to show (ã,σ ◦µ)→IG (a,σ). As there is a generalization edge from a to
ã with the instantiation µ , we know that |= 〈a〉SL⇒ µ(〈ã〉SL). Thus, (sc,mc) |= σ(〈a〉SL)
implies (sc,mc) |= (σ ◦µ)(〈ã〉SL). Hence, (ã,σ ◦µ)→IG (a,σ) follows as in (a).

(d) Finally, we consider the case where a has a generalization edge to ã with the instantiation
µ , and there is a path consisting of a refinement and an evaluation edge from ã to a, where
σ(v) = σ(µ(v)) for all v ∈ Vsym(ã). We show that then we have (a,σ)→IG (ã,σ ◦
µ)→+

IG
(a,σ). Here, (a,σ)→IG (ã,σ ◦µ) follows as in (c), and (ã,σ ◦µ)→+

IG
(a,σ)

can be proved as in (b). ut

4 Limitations, Related Work, Experiments, and Conclusion

We have developed a new approach to prove memory safety and termination of C (resp.
LLVM) programs with explicit pointer arithmetic and memory access. It relies on a represen-
tation of abstract program states which allows an easy automation of the rules for symbolic
execution (by using standard SMT solving to check the first-order conditions of these rules).
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Moreover, this representation is suitable for generalizing abstract states and for generating
integer transition systems. In this way, LLVM programs are translated fully automatically
into ITSs amenable to automated termination analysis.

Limitations and Future Work. To simplify the formalization of our approach, we have not
discussed global variables, which our implementation supports. In line with most other tech-
niques, we currently do not handle the case that calls to malloc may fail, and we also assume
that reading from uninitialized (but allocated) heap locations is safe and yields an arbitrary
value. Our method could easily be adapted to lift these limitations. Furthermore, we currently
disregard integer overflows and treat all integer types except i1 as the infinite set Z. In the
future, we want to handle bounded integers by adapting the approach of [23].

In the paper, we only gave rules for a subset of all LLVM instructions. Our implementation
handles several more instructions,12 but there exist instructions (or cases of instructions)
where our implementation does not yet contain suitable rules for symbolic execution. In
particular, our abstract domain currently does not handle undef values, floating point values,
or vectors, and consequently, all corresponding instructions are unsupported.

In general, when encountering an instruction that currently cannot be handled, the sym-
bolic execution can nevertheless continue by removing all potentially affected knowledge.
The same holds if one cannot prove all conditions of a symbolic execution rule. In many cases,
it is sufficient to remove all information about the value that is computed by the instruction,
e.g., when performing floating point operations.

In this paper, we did not treat recursive programs and we also did not present any method
to prove that an LLVM program is not memory safe or does not terminate. However, we are
working on extending our approach accordingly and our implementation already contains
some support for recursion and non-termination by adapting our approaches for recursion
and non-termination of Java programs [7,8]. Another direction for further work could be to
embed our analysis into a Counter-Example-Guided Abstraction Refinement (CEGAR) loop
[15] in order to also disprove memory safety or automatically refine the abstraction.

Finally, we cannot yet analyze C programs using inductive data structures defined via
“struct”. However, in the future, we want to adapt our corresponding technique for termina-
tion analysis of Java programs [6,8,9,43]. Instead of ITSs, here one generates integer term
rewrite systems [22,25] from the symbolic execution graph, where data objects are trans-
formed into terms in order to represent them in a precise way. Combining such approaches
with the handling of explicit pointer arithmetic will be the subject of further work.

Related Work and Experimental Evaluation. There exist numerous other methods and tools
for termination analysis of imperative programs (e.g., ARMC [44], COSTA [2], CppInv [32],
Ctrl [30], Cyclist [11], FuncTion [19], HipTNT+ [34], Juggernaut [17], Julia [45],
KITTeL [22], LoopFrog [48],TAN [31],Terminator [16],TRex [28],T2 [10], Ultimate [29],
. . . ). Until very recently, most other approaches did not handle the heap at all, or supported
dynamic data structures by an abstraction to integers (e.g., to represent sizes or lengths) or
to terms (representing finite unravelings). In particular, most tools failed when the control
flow depends on explicit pointer arithmetic and on detailed information about the contents
of addresses. While our approach was inspired by our previous work on termination of Java,
in the current paper we extend these techniques to prove termination and memory safety of
programs with explicit pointer arithmetic. This requires a fundamentally new approach, as

12 The instructions supported by our implementation are icmp (eq,ne,sgt,sge,slt,sle, ugt,uge,ult,ule),
add, sub, mul, sdiv, srem, urem, and, or, xor, shl, ashr, lshr, call, br, bitcast, ptrtoint, trunc,
sext, zext, getelementptr (with at most 2 parameters), select, phi, ret, alloca, load, and store.



28 Thomas Ströder et al.

pointer arithmetic cannot be expressed in the Java-based techniques of [6,8,9,43].
We implemented our technique in the termination prover AProVE [26,47], which uses

the SMT solvers Yices [21] and Z3 [18] in the back-end. AProVE participated very suc-
cessfully in the International Competition on Software Verification (SV-COMP)13 at TACAS
and in the International Termination Competition (TermComp),14 both of which feature cate-
gories for termination of C programs since 2014. To evaluate AProVE’s power, we performed
experiments on all 468 programs from the C category of the Termination Problem Data Base
(TPDB). This is the collection of problems used at TermComp 2015.

To prove termination of low-level C programs, one also has to ensure their memory safety.
Approaches for automatically proving memory safety of programs with pointer arithmetic
were proposed in [13,27], for example. However, while there exist several tools to prove
memory safety of C programs, many of them do not handle explicit byte-accurate pointer
arithmetic (e.g., Thor [37,38] or SLAyer [4]) or require the user to provide the needed
loop invariants (as in the Jessie plug-in of Frama-C [39]). In contrast, our approach can
prove memory safety of such algorithms fully automatically. More precisely, for the 468
programs in our collection, AProVE can show memory safety for 324 examples. In contrast,
the most powerful tool for verifying memory safety at SV-COMP 2015 (Predator [20]) proves
memory safety for 246 examples (see [3] for details). However, this comparison is not very
meaningful, since Predator considers bounded integers, whereas AProVE assumes integers
to be unbounded. For that reason, the resulting notions of memory safety are incomparable.
Moreover, there exist several tools to disprove memory safety (e.g., Predator, CPAchecker
[36], and LLBMC [24]). In contrast, AProVE can only prove, but not disprove memory safety,
since our symbolic execution graph corresponds to an over-approximation of all possible
program runs. So the occurrence of the ERR state in our graph does not imply that the
program is really not memory safe.

To evaluate the power of our approach for proving termination, we compared AProVE to
the other tools (Ultimate and HipTNT+) from the C category of TermComp 2015. AProVE,
Ultimate, and HipTNT+ also were the three most powerful tools for C termination at SV-
COMP 2015. In addition, we included the tools FuncTion and KITTeL in our evaluation,
where KITTeL operates on LLVM as well. Recall that in the present paper, we only intro-
duced techniques to prove termination of non-recursive programs. Therefore, to evaluate the
contributions of the present paper, we tested the tools on all C programs from the TPDB,
except those programs that feature recursion or that are known to be non-terminating (i.e.,
where some tool managed to disprove termination). This resulted in a set of 368 programs.15

Tool YES MAYBE Runtime

AProVE 225 143 19.8
Ultimate 197 171 21.6
HipTNT+ 175 193 2.7
FuncTion 151 217 1.1
KITTeL 66 302 0.2

On the side, we show the performance of the tools
when using a time limit of 300 seconds for each exam-
ple. Here, we used an Intel Xeon with 4 cores clocked
at 2.33 GHz each and 16 GB of RAM. “YES” gives
the number of examples where termination could be
proved, “MAYBE” states how often the tool could
not find a proof within 300 seconds, and “Runtime”
is the average time in seconds for those examples where the tool proved termination.

13 http://sv-comp.sosy-lab.org/
14 http://termination-portal.org/wiki/Termination_Competition
15 As mentioned above, we also started implementing some support for recursion and non-termination in

AProVE. When running the tools on all 468 C examples from the TPDB, AProVE proves termination for
264 examples and non-termination for 19 examples. Ultimate shows termination for 240 programs and non-
termination for 38 ones. Finally, HipTNT+ proves termination in 218 cases and non-termination in 30 cases.
Again, the detailed results can be found at [3].
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The table shows that in our experiments, AProVE is currently the most powerful tool
for proving termination of non-recursive C programs. The reason is due to our novel rep-
resentation of the memory, which handles pointer arithmetic and keeps information about

Tool YES MAYBE Runtime

AProVE 111 31 28.8
Ultimate 67 75 43.0
HipTNT+ 57 85 5.3
FuncTion 62 80 1.2
KITTeL 9 133 0.3

the contents of addresses. This is demonstrated by
the table on the right, which shows the results for
only those programs that use pointers, but do not con-
tain structs. On the other hand, since AProVE con-
structs symbolic execution graphs to prove memory
safety and to infer suitable invariants needed for ter-
mination proofs, its runtime is often higher than that
of other tools. For details on our experiments and to access our implementation in AProVE
via a web interface, we refer to [3].

Acknowledgements We are grateful to the developers of the other tools for termination or memory safety
[19,20,22,29,34] for their help with the experiments.
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47. T. Ströder, C. Aschermann, F. Frohn, J. Hensel, and J. Giesl. AProVE: Termination and memory safety

of C programs (competition contribution). In Proc. TACAS ’15.
48. A. Tsitovich, N. Sharygina, Christoph M. Wintersteiger, and D. Kroening. Loop summarization and

termination analysis. In Proc. TACAS ’11.
49. Wikibooks C Programming: http://en.wikibooks.org/wiki/C_Programming/.
50. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM IR for verified

program transformations. In Proc. POPL ’12.



Automatically Proving Termination and Memory Safety for Programs with Pointer Arithmetic 31

A Specific Rules for→LLVM on Concrete States

As explained in Sect. 2.4, when we apply our symbolic execution rules to concrete states,
they can be used as an interpreter for LLVM. This is needed to prove the soundness of our
approach w.r.t. the formal Vellvm semantics of LLVM. However, to apply our symbolic
execution rules as an interpreter for concrete states, one has to modify the rules for load,
store, alloca, and malloc slightly to ensure that their application to a concrete state again
results in a concrete state. The main difference is in the handling of memory operations.

Our abstract semantics can afford to throw away information when one loads an element
of type ty 6= i8 while the corresponding information in PT only has the form w1 ↪→i8 w2.
However, for our concrete semantics, we need to keep track of all information on each
allocated byte of memory. So when we want to load a ty-value from memory at the addresses
y0, . . . ,ysize(ty)−1 where y0 ↪→i8 z0, . . . ,ysize(ty)−1 ↪→i8 zsize(ty)−1, we need to convert the
integer values of the individual bytes z0, . . . ,zsize(ty)−1 to the overall value of type ty. Thus,
for the concrete execution rule for the load instruction, we require exact knowledge about
the size(ty) consecutive addresses y0, . . . ,ysize(ty)−1 at which the value to load is stored. To
ease the decomposition of a number into several bytes, we assume in our formalization via
separation logic that the bytes are stored as unsigned values in little-endian data layout. This
allows us to multiply the unsigned values by 28·i where i is the index of the respective byte
and add the results to obtain the overall value. However, since LLVM (and hence also our
abstract domain) uses signed values by default, we need to convert the obtained unsigned
value to the corresponding signed one. In the following, let bitsize(ty) be the number of bits
required for the type ty (i.e., bitsize(in) = n).

load from allocated memory (p : “x = load ty* ad [, align al]” with x,ad ∈ VP , al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v], AL1) ·CS, KB′, AL, PT)
if

• there is Jw1, w2K ∈ AL∗ with |= 〈a〉 ⇒ (w1 ≤ LV1(ad) ∧ LV1(ad)+ size(ty)−1≤ w2),
• |= 〈a〉 ⇒ (LV1(ad) mod al= 0), if an alignment al≥ 1 is specified,
• there are y0 ↪→i8 z0, . . . ,ysize(ty)−1 ↪→i8 zsize(ty)−1 ∈ PT such that

|= 〈a〉 ⇒ LV1(ad) = y0 ∧
∧

1≤i≤size(ty)−1 yi = y0 + i,
• KB′ = KB∪{v = t}. For 1≤ i≤ size(ty), let ki ∈ Z be the number with |= 〈a〉 ⇒ zi = ki.

Let s = ∑0≤i≤size(ty)−1 ki ·28·i. Then t = s if s < 2bitsize(ty)−1 and t = s−2bitsize(ty) otherwise.
• v ∈ Vsym is fresh

For the store instruction, we now have to keep track of each allocated byte of memory if
store writes a multi-byte value. Thus, similar to load, we also have to perform conversions
between multi-byte values and single bytes as well as between signed and unsigned values.
We again need exact knowledge about the addresses y0, . . . ,ysize(ty)−1 affected by the store
instruction. The values at these addresses are replaced by new ones representing the value
to store. We first decompose this value into a series of unsigned byte values (denoted by
ri), compute the corresponding signed interpretation (denoted by ui) assign fresh symbolic
variables vi to these values, and store the vi at the addresses yi in PT .

Note that if the number of bits needed for ty (i.e., bitsize(ty)) is not a multiple of 8, then
the conversion of ri to ui for the most significant byte at address ysize(ty)−1 has to take into
account that here one does not regard all 8 bits of this byte, but only (bitsize(ty) mod 8) bits.
The reason is that it is unspecified what happens to the extra bits that do not belong to the
type [35].
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store to allocated memory (p : “store ty t, ty* ad [, align al]”, t∈VP∪Z, ad∈VP , al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1, AL1) ·CS, KB′, AL, PT ′)
if

• there is Jw1, w2K∈AL∗ with |= 〈a〉 ⇒ (w1 ≤ LV1(ad) ∧ LV1(ad)+size(ty)−1≤ w2),
• |= 〈a〉 ⇒ (LV1(ad) mod al= 0), if an alignment al≥ 1 is specified,
• there are y0 ↪→i8 z0, . . . ,ysize(ty)−1 ↪→i8 zsize(ty)−1 ∈ PT such that

|= 〈a〉 ⇒ LV1(ad) = y0 ∧
∧

1≤i≤size(ty)−1 yi = y0 + i,
• KB′ = KB∪{vi = ui | 0≤ i≤ size(ty)−1},
• PT ′ = (PT \{y0 ↪→i8 z0, . . . ,ysize(ty)−1 ↪→i8 zsize(ty)−1})∪{y0 ↪→i8 v0, . . . ,ysize(ty)−1 ↪→i8 vsize(ty)−1}
• Let t ′ = t if t ≥ 0 and t ′ = t +2bitsize(ty) otherwise.

For all 0≤ i≤ size(ty)−1, let ri = (t ′ div 28·i) mod 28.
For 0≤ i≤ size(ty)−2, let ui = ri if ri < 27 and ui = ri−28 otherwise.
For i = size(ty)−1, let ui = ri if ri < 2(bitsize(ty)−1) mod 8 and let ui = ri−2bitsize(ty) mod 8 otherwise.

• v0, . . . ,vsize(ty)−1 ∈ Vsym are fresh

The memory allocation commands alloca and malloc non-deterministically identify
an address r as the return value such that there is enough unallocated memory at r to store t
values of the desired type ty. For the choice of r, we need to ensure that there is no overlap
with the currently allocated memory blocks and that the alignment constraints are respected.

Since the concrete evaluation rules for accessing memory require exact knowledge about
the contents zi of each affected memory cell yi (and we assume that accessing allocated but
uninitialized memory just yields an arbitrary but fixed value), the concrete evaluation rules
for allocating memory need to provide this knowledge for each allocated memory cell.16 This
is done by non-deterministically choosing values ni from [−27,27−1] for each of the newly
allocated bytes. We need to ensure that the addresses of the allocated bytes are consecutive,
starting at address r.

alloca (p : “x = alloca ty, in t [, align al]” with x ∈ VP , t ∈ VP ∪Z, and al ∈ N)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v1], AL1 ∪{Jv1, v2K}) ·CS, KB′ ∪{v2 = v1 + size(ty) ·LV1(t)−1}, AL, PT ′)
if

• for the number k ∈ Z with |= 〈a〉 ⇒ LV1(t) = k, we have k > 0,
• KB′ = KB∪{v1 = r, y0 = r}∪{yi = y0 + i | 1≤ i≤ size(ty) · k−1}
∪{zi = ni | 0≤ i≤ size(ty) · k−1},

• v1,v2,y0, . . . ,ysize(ty)·k−1,z0, . . . ,zsize(ty)·k−1 ∈ Vsym are fresh,
• PT ′ = PT ∪{yi ↪→i8 zi | 0≤ i≤ size(ty) · k−1},
• n0, . . . ,nsize(ty)·k−1 ∈ [−27,27−1],
• r ∈ N>0 such that |= 〈a〉 ⇒ Jr, r+ size(ty) · k−1K⊥Jw1, w2K for all Jw1, w2K ∈ AL∗,

and r mod c = 0, where c = al, if al≥ 1 is specified, or else c = align(ty)

16 Note that while we assume that loading values from allocated but uninitialized memory cells yields an
arbitrary value, the Vellvm semantics LLVMD assumes that these values are always 0. Hence, for simulating
Vellvm, we can just use the particular case of our concrete semantics where the values at these addresses are
all initialized with 0.
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malloc (p : “x = call i8* @malloc(in t)” with x ∈ VP and t ∈ VP ∪Z)

((p, LV1, AL1) ·CS, KB, AL, PT)

((p+, LV1[x := v1], AL1) ·CS, KB′ ∪{v2 = v1 +LV1(t)−1}, AL∪{Jv1, v2K}, PT ′)
if

• for the number k ∈ Z with |= 〈a〉 ⇒ LV1(t) = k, we have k > 0,
• KB′ = KB∪{v1 = r, y0 = r}∪{yi = y0 + i | 1≤ i≤ k−1}
∪{zi = ni | 0≤ i≤ k−1},

• v1,v2,y0, . . . ,yk−1,z0, . . . ,zk−1 ∈ Vsym are fresh,
• PT ′ = PT ∪{yi ↪→i8 zi | 0≤ i≤ k−1},
• n0, . . . ,nk−1 ∈ [−27,27−1],
• r ∈ N>0 such that |= 〈a〉 ⇒ Jr, r+LV1(t)−1K⊥Jw1, w2K for all Jw1, w2K ∈ AL∗,

and r mod c = 0, where c = 8 for 32-bit platforms and c = 16 for 64-bit platforms

Now we show that applying a symbolic execution rule for concrete states can always be
simulated by the corresponding symbolic execution rule for abstract states. In particular, this
also holds for the above cases where we have different rules for concrete states. Thus, the
following lemma is needed to complement the proof of Thm. 10.

Lemma 14 (Evaluation Steps via Symbolic Execution Simulate→LLVM) Let c,c be con-
crete LLVM states with c→LLVM c, let a,a be LLVM states with a E VA L−−−→ a (here, E VA L−−−→
denotes an evaluation step with symbolic execution) such that a represents c. Then a repre-
sents c.

Proof Neither a nor c is ERR since ERR has no successor states. Since a represents c, the
length of the call stacks and the positions in the call stacks must be identical. Thus, we have

a = ([(p1,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)

c = ([(p1,LVc
1,ALc

1), . . . ,(pn,LVc
n,ALc

n)],KBc,ALc,PTc)

Moreover, since a represents c, we also obtain (sc,mc) |= σ(〈a〉SL) for some concrete instan-
tiation σ . With CSa = [(p1,LVa

1,ALa
1), . . . ,(pn,LVa

n,ALa
n)], we have 〈a〉SL = CSa ∧KBa ∧

(∗ϕ∈AL∗ 〈ϕ〉SL)∧ (
∧

ϕ∈PT 〈ϕ〉SL).
We perform a case analysis w.r.t. the evaluation rule applied for the step c→LLVM c. By

inspection of the rules, we see that rules with the same name are used in both cases, where
for load from allocated memory, store to allocated memory, alloca, and malloc we use
the rules in this section for the concrete evaluation relation→LLVM and the rules in Sect. 2
for symbolic execution.

1. The step c→LLVM c uses the same rule definition as for symbolic execution
We give the proof for sub, the other instructions are analogous.
By construction of the rule, we get

a = ([(p+1 ,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)

c = ([(p+1 ,LVc
1,ALc

1), . . . ,(pn,LVc
n,ALc

n)],KBc,ALc,PTc)

where
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LVa
1 = LVa

1[x := w] for a fresh w ∈ Vsym

LVa
i = LVa

i for 2≤ i≤ n

ALa
i = ALa

i for 1≤ i≤ n

ALa = ALa

PTa = PTa

KBa = KBa∪{w = LVa
1(t1)−LVa

1(t2)}

LVc
1 = LVc

1[x := v] for a fresh v ∈ Vsym

LVc
i = LVc

i for 2≤ i≤ n

ALc
i = ALc

i for 1≤ i≤ n

ALc = ALc

PTc = PTc

KBc = KBc∪{v = LVc
1(t1)−LVc

1(t2)}

Thus, the positions in the call stacks of a and c again coincide as required for a to
represent c. It remains to prove that

(sc,mc) |= σ(〈a〉SL)

holds for some concrete instantiation σ .
To see this, let σ = σ [w := σ(LVa

1(t1))−σ(LVa
1(t2))], i.e., σ is like σ for all symbolic

variables except w. Let k1,k2 ∈ Z be the numbers with |= 〈c〉 ⇒ LVc
1(t1) = k1 and |=

〈c〉 ⇒ LVc
1(t2) = k2. By construction, we have mc = mc and sc = sc[x1 := k1− k2].

The formula σ(〈a〉SL) differs from σ(〈a〉SL) as follows:
– We removed the conjunct x1 = σ(LVa

1(x1)).
– We added the conjuncts x1 = σ(w) and σ(w) = σ(LVa

1(t1))−σ(LVa
1(t2)). Note that

w does not occur in a and thus, we have σ(w) = σ(LVa
1(t1)−LVa

1(t2)).
So we get

σ(〈a〉SL)

= (σ(〈a〉SL)\{x1 = σ(LVa
1(x1))}) ∪ {x1 = σ(w),σ(w) = σ(LVa

1(t1)−LVa
1(t2))}

Since sc behaves like sc on all variables except x1, which does not occur in σ(〈a〉SL)\
{x1 = σ(LVa

1(x1))}, and mc = mc, we get (sc,mc) |= σ(〈a〉SL)\{x1 = σ(LVa
1(x1))}.

The new conjunct σ(w) = σ(LVa
1(t1)−LVa

1(t2)) is a tautology by definition of σ .
Finally, the conjunct x1 = σ(w) is x1 = σ(LVa

1(t1))−σ(LVa
1(t2)). To see that (sc,mc) |=

x1 = σ(LVa
1(t1))−σ(LVa

1(t2)), recall that sc(x1) = k1− k2. Note that t1 is either a con-
stant or a variable from VP . If t1 is a constant, we have σ(LVa

1(t1)) = t1 and we also have
t1 = k1 since |= 〈c〉 ⇒ LVc

1(t1) = t1 = k1. If t1 is some program variable y ∈ VP , then
(sc,mc) |= σ(〈a〉SL) implies that sc(y1) = σ(LVa

1(y)). Again, we also have sc(y1) = k1,
since |= 〈c〉⇒ LVc

1(t1) = LVc
1(y) = k1. So in both cases, we obtain σ(LVa

1(t1)) = k1 and
similarly, we also have σ(LVa

2(t2)) = k2. Thus, we finally obtain (sc,mc) |= x1 = σ(w).

2. load from allocated memory

Let sum = ∑0≤i≤size(ty)−1 ki · 28·i. We consider the case sum < 2bitsize(ty))−1. The other
case is analogous.
By construction of the rule, we get

a = ([(p+1 ,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)

c = ([(p+1 ,LVc
1,ALc

1), . . . ,(pn,LVc
n,ALc

n)],KBc,ALc,PTc)

where
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LVa
1 = LVa

1[x := w] for a w ∈ Vsym fresh

LVa
i = LVa

i for 2≤ i≤ n

ALa
i = ALa

i for 1≤ i≤ n

ALa = ALa

PTa = PTa∪{LVa
1(ad) ↪→ty w}

KBa = KBa

LVc
1 = LVc

1[x := v] for a v ∈ Vsym fresh

LVc
i = LVc

i for 2≤ i≤ n

ALc
i = ALc

i for 1≤ i≤ n

ALc = ALc

PTc = PTc

KBc = KBc∪{v = sum}

Thus, the positions in the call stacks of a and c again coincide as required for a to
represent c. It remains to prove that

(sc,mc) |= σ(〈a〉SL)

holds for some concrete instantiation σ .
To see this, let σ = σ [w := sum,w′ := sum]. Here, w′ is the fresh symbolic variable
introduced in the separation logic formula for the new entry in PTa (corresponding to v3
in Def. 4). By construction, we have mc = mc and sc = sc[x1 := sum].
The formula σ(〈a〉SL) differs from σ(〈a〉SL) as follows:

– We removed the conjunct x1 = σ(LVa
1(x1)).

– We added the conjuncts x1 = σ(w) and 〈σ(LVa
1(ad)) ↪→ty σ(w)〉SL. Note that w

does not occur in a, and thus the latter conjunct is 〈σ(LVa
1(ad)) ↪→ty σ(w)〉SL.

So we get:17

σ(〈a〉SL)

= (σ(〈a〉SL)\{x1 = σ(LVa
1(x1))}) ∪ {x1 = σ(w),σ(LVa

1(ad))> 0, true}∪⋃
0≤i≤size(ty)−1

{σ(LVa
1(ad))+ i ↪→

⌊
σ(w′)

28·i

⌋
mod 28}∪

{(σ(w)≥ 0⇒ σ(w′) = σ(w)),(σ(w)< 0⇒ σ(w′) = σ(w)+28·size(ty))}

Since sc behaves like sc on all variables except x1, which does not occur in σ(〈a〉SL)\
{x1 = σ(LVa

1(x1))}, and mc = mc, we get (sc,mc) |= σ(〈a〉SL)\{x1 = σ(LVa
1(x1))}.

The new conjunct (σ(w) < 0⇒ σ(w′) = σ(w)+ 28·size(ty)) is trivially satisfied since
σ(w) = sum ≥ 0. For the new conjunct (σ(w) ≥ 0 ⇒ σ(w′) = σ(w)), note that by
definition of σ it is the same as sum≥ 0⇒ sum = sum, which is a tautology. The same
holds for the conjunct true.
The conjunct σ(LVa

1(ad)) > 0 holds, since there is a Jv1, v2K ∈ (ALa)∗ with 1 ≤ σ(v1)
and σ(v1) ≤ σ(LVa

1(ad)). Moreover, the conjunct x1 = σ(w) is the same as x1 = sum.
So we directly have (sc,mc) |= x1 = sum since sc(x1) = sum.
Finally, we consider the conjuncts σ(LVa

1(ad))+ i ↪→
⌊

σ(w′)
28·i

⌋
mod 28 for all 0 ≤ i ≤

size(ty)−1. Let ni be the number with |= 〈c〉⇒ yi = ni. Note that σ(LVa
1(ad)) = n0 and

hence, ni = σ(LVa
1(ad))+ i and, thus, the conjuncts are satisfied if we have mc(ni) =

17 Here, we use that
⌊
b x

y c
z

⌋
=
⌊

x
y·z

⌋
for the repeated integer division.



36 Thomas Ströder et al.

ki =
⌊

σ(w′)
28·i

⌋
mod 28. We obtain:⌊

σ(w′)
28·i

⌋
mod 28 =

⌊ sum
28·i

⌋
mod 28

=

⌊
∑0≤ j≤size(ty)−1 k j ·28· j

28·i

⌋
mod 28

(∗)
=

⌊
∑i≤ j≤size(ty)−1 k j ·28· j

28·i

⌋
mod 28

= ∑
i≤ j≤size(ty)−1

k j ·28·( j−i) mod 28

(∗∗)
= ki

Here, the step (∗) holds because of the b.c operation reducing all smaller addends to 0.
The step (∗∗) holds because of the mod operation reducing all larger addends to 0.

3. store to allocated memory
We consider the case σ(LVa

1(t))≥ 0. The other case is analogous.
By construction of the rule, we get

a = ([(p+1 ,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)

c = ([(p+1 ,LVc
1,ALc

1), . . . ,(pn,LVc
n,ALc

n)],KBc,ALc,PTc)

where

LVa
i = LVa

i for 1≤ i≤ n

ALa
i = ALa

i for 1≤ i≤ n

ALa = ALa

PTa = {(w1 ↪→sy w2) ∈ PTa |
|= 〈a〉 ⇒
(JLVa

1(ad), LVa
1(ad)+ size(ty)−1K

⊥ Jw1, w1 + size(sy)−1K)}
∪{LVa

1(ad) ↪→ty w}
KBa = KBa∪{w = LVa

1(t)}

LVc
i = LVc

i for 1≤ i≤ n

ALc
i = ALc

i for 1≤ i≤ n

ALc = ALc

PTc = (PTc \{y0 ↪→i8 z0, . . . ,

ysize(ty)−1 ↪→i8 zsize(ty)−1})
∪{y0 ↪→i8 v0, . . . ,

ysize(ty)−1 ↪→i8 vsize(ty)−1}
KBc = KBc∪{v0 = u0, . . . ,

vsize(ty)−1 = usize(ty)−1}

Thus, the positions in the call stacks of a and c again coincide as required for a to
represent c. It remains to prove that

(sc,mc) |= σ(〈a〉SL)

holds for some concrete instantiation σ .
To see this, let σ = σ [w := σ(LVa

1(t)),w
′ := σ(LVa

1(t))]. Here, w′ is the fresh symbolic
variable introduced in the separation logic formula for the new entry in PTa (corre-
sponding to v3 in Def. 4). By construction, we have sc = sc and mc(n) = mc(n) for all
n ∈ N>0 \{n0, . . . ,nsize(ty)−1}, where ni is the number with |= 〈c〉 ⇒ yi = ni. Moreover,
we have mc(ni) = ri for all i ∈ {0, . . . ,size(ty)−1}.
The formula σ(〈a〉SL) differs from σ(〈a〉SL) as follows:
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– We removed certain conjuncts from σ(PTa)SL. If a conjunct of the form w1 ↪→ w2
was kept, then we know that σ(w1) /∈ {n0, . . . ,nsize(ty)−1}. Otherwise, the proof
that the corresponding allocated block does not overlap with JLVa

1(ad), LVa
1(ad)+

size(ty)−1K would fail.
– We added the conjuncts σ(w) = σ(LVa

1(t)) and 〈σ(LVa
1(ad)) ↪→ty σ(w)〉SL, i.e.,

σ(w) = σ(LVa
1(t)) and 〈σ(LVa

1(ad)) ↪→ty σ(w)〉SL.
So we get:

σ(〈a〉SL)

⊆
(
σ(〈a〉SL)\{w1 ↪→ w2 | σ(w1) ∈ {n0, . . . ,nsize(ty)−1}}

)
∪

{σ(w) = σ(LVa
1(t)), σ(LVa

1(t))> 0, true}∪⋃
0≤i≤size(ty)−1

{σ(LVa
1(ad))+ i ↪→

⌊
σ(w′)

28·i

⌋
mod 28}∪

{(σ(w)≥ 0⇒ σ(w′) = σ(w)),(σ(w)< 0⇒ σ(w′) = σ(w)+28·size(ty))}

Since mc behaves like mc on all addresses except {n0, . . . ,nsize(ty)−1}, the conjuncts that
were kept from σ(〈a〉SL) are satisfied by (sc,mc).
Let us now consider the new conjuncts σ(LVa

1(ad))+ i ↪→
⌊

σ(w′)
28·i

⌋
mod 28 for all 0 ≤

i ≤ size(ty)− 1. Note that ni = σ(LVa
1(ad))+ i and, thus, the conjuncts are satisfied

if we have ri =
⌊

σ(w′)
28·i

⌋
mod 28. This follows directly from the definition of the ri and

σ(w′) = σ(LVa
1(t)). That all the other new conjuncts are also satisfied can be shown as

for the load rule.

4. alloca

By construction of the rules, we get

a = ([(p+1 ,LVa
1,ALa

1), . . . ,(pn,LVa
n,ALa

n)],KBa,ALa,PTa)

c = ([(p+1 ,LVc
1,ALc

1), . . . ,(pn,LVc
n,ALc

n)],KBc,ALc,PTc)

where we have

LVa
1 = LVa

1[x := w1]

LVa
i = LVa

i for 2≤ i≤ n

ALa
1 = ALa

1∪{Jw1, w2K}
ALa

i = ALa
i for 2≤ i≤ n

ALa = ALa

PTa = PTa

KBa = KBa∪{w1 mod d = 0, w2 = w1 + size(ty) ·LVa
1(t)−1}
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where w1,w2 ∈ Vsym are fresh and where d = al, if al ≥ 1 is specified, or else d =
align(ty), and

LVc
1 = LVc

1[x := v1]

LVc
i = LVc

i for 2≤ i≤ n

ALc
1 = ALc

1∪{Jv1, v2K}
ALc

i = ALc
i for 2≤ i≤ n

ALc = ALc

PTc = PTc∪{yi ↪→i8 zi | 0≤ i≤ size(ty) · k−1}
KBc = KBc∪{zi = ni | 0≤ i≤ size(ty) · k−1}

∪{v1 = r, v2 = v1 + size(ty) · k−1, y0 = r}
∪{yi = y0 + i | 1≤ i≤ size(ty) · k−1}

where v1,v2,y0, . . . ,ysize(ty)·k−1,z0, . . . ,zsize(ty)·k−1 ∈ Vsym are fresh and where r ∈ N
such that |= 〈c〉 ⇒ Jr, r+ size(ty) · k− 1K⊥Js1, s2K for all Js1, s2K ∈ (ALc)∗ as well as
r mod d = 0 for d as before.
Thus, the positions in the call stacks of a and c again coincide as required for a to
represent c. It remains to prove that

(sc,mc) |= σ(〈a〉SL)

holds for some concrete instantiation σ .
To see this, let last = size(ty) · k−1 and σ = σ [w1 := r, w2 := r+ last].
By construction, we have mc = mc[r := n0,r + 1 := n1, . . . ,r + last := nlast] and sc =
sc[x1 := r].
The formula σ(〈a〉SL) differs from σ(〈a〉SL) as follows:

– We removed the conjuncts x1 = σ(LVa
1(x1)) and σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL).

– We added the conjuncts σ(∗
ϕ∈(ALa)∗ 〈ϕ〉SL), x1 = σ(w1), σ(w1) mod d = 0, and

σ(w2) = σ(w1)+ size(ty) ·σ(LVa
1(t))−1.

Note that k = σ(LVa
1(t)) holds because either t is a constant (which directly implies the

statement) or if t ∈ VP , we have t1 = σ(LVa
1(t)) ∈ σ(〈a〉SL) by construction of 〈a〉SL.

Then as (sc,mc) |= σ(〈a〉SL), in particular sc(t1) = σ(LVa
1(t)) holds and by definition of

sc, we have sc(t1) = k. Moreover, since w1,w2 do not occur in a, we have σ(LVa
1(t)) =

σ(LVa
1(t)).

So we get

σ(〈a〉SL)

= (σ(〈a〉SL)\{x1 = σ(LVa
1(x1)), σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL)}) ∪

{σ(∗
ϕ∈(ALa)∗ 〈ϕ〉SL), x1 = σ(w1), σ(w1) mod d = 0,} ∪

{σ(w2) = σ(w1)+ size(ty) ·σ(LVa
1(t))−1}

Note that sc behaves like sc on all variables except x1, which does not occur in σ(〈a〉SL)\
{x1 = σ(LVa

1(x1)), σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL)}. Moreover, mc(n) = mc(n) on all addresses
n where mc is defined (ensured by the conditions on the choice of r). Thus, we get
(sc,mc) |= σ(〈a〉SL)\{x1 = σ(LVa

1(x1)), σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL)}.
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For the new conjunct σ(∗
ϕ∈(ALa)∗ 〈ϕ〉SL), note that (ALa)∗ = (ALa)∗∪{Jw1, w2K}. Thus,

σ(∗
ϕ∈(ALa)∗ 〈ϕ〉SL)

= σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL ∗ 〈Jw1, w2K〉SL)

= σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL) ∗ σ(1≤ w1 ∧ w1 ≤ w2 ∧ (∀x.∃y. (w1 ≤ x≤ w2)⇒ (x ↪→ y))))

To see that (sc,mc) is a model of this formula, consider mc = m1 ]m2 where m1 ⊥ m2
with m1 = mc and m2 = [r := n0,r + 1 := n1, . . . ,r + last := nlast]. Now (sc,m1) |=
σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL) holds, because

– x1 (the only indexed variable on which sc behaves different from sc) does not occur
in σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL),

– σ differs from σ only on variables that do not occur in σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL),
– and (sc,mc) |= σ(∗ϕ∈(ALa)∗ 〈ϕ〉SL) by the premise that a represents c.

Furthermore, we have:

σ(1≤ w1 ∧ w1 ≤ w2 ∧ (∀x.∃y. (w1 ≤ x≤ w2)⇒ (x ↪→ y))))

= 1≤ r ∧ r ≤ r+ last ∧ (∀x.∃y. (r ≤ x≤ r+ last)⇒ (x ↪→ y)))) =: ψ

Now (sc,m2) |= ψ holds, because the first two conjuncts hold by the conditions of the
concrete alloca rule, and m2 is defined on all x such that r ≤ x and x≤ r+ last.

The new conjunct σ(w1) mod d = 0 is the same as r mod d = 0, which holds by the
conditions of the concrete alloca rule.

The new conjunct σ(w2) = σ(w1)+size(ty) ·σ(LVa
1(t))−1 is the same as r+size(ty) ·

σ(LV1(t))−1 = r+ size(ty) · k−1, which holds since k = σ(LVa
1(t)).

Finally, the new conjunct x1 = σ(w1) is the same as x1 = r. To see that (sc,mc) |= x1 = r,
recall that sc(x1) = sc[x1 := r] = r.

5. malloc

Analogous to alloca, with ty= i8. ut


